# Operations Manual for Holley Commander Pro 950 Auto-Tune Software

October 13, 2009

| Revision History |         |                                                                                                                                                                                   |  |  |  |  |
|------------------|---------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Date             | Version | Description                                                                                                                                                                       |  |  |  |  |
| 10/13/09         | 2.1     | - Shifted compensation thresholds used by narrow band oxygen sensor from 95-105% to 90-100%                                                                                       |  |  |  |  |
|                  |         | <ul> <li>Replaced analysis message "NO - Oxygen volts changing too much" with<br/>"NO - vehicle is decelerating".</li> <li>Added communication and setup progress bar.</li> </ul> |  |  |  |  |
|                  |         |                                                                                                                                                                                   |  |  |  |  |

## **Table of Contents**

| 1.Installation                         | 3  |
|----------------------------------------|----|
| 2.Features                             | 3  |
| 3 Operation                            |    |
| 4 Technical Support                    | 10 |
| ······································ |    |

#### 1. Installation

This program is intended for use on PC's running Windows (2000, XP, Vista). Copy the program to the desktop. It will attempt to communicate to the Holley Commander 950 Pro ECU via a user selectable RS232 serial port.



#### 2. Features

a) Version Information - The version information appears at the top of the program.



b) **Communications & Setup Progress Bar -** This appears whenever the program needs to collect setup information.

No connection to ECM or engine is off

NO CONNECTION TO ECM!

During collection of setup parameters

Reading setup parameters...

| L_Fr   | JEL N | лАР —       | (                          |                            | (                          |                            | (                         |                           |                           |                            |                          |                          | (                        |                |      |      |                |
|--------|-------|-------------|----------------------------|----------------------------|----------------------------|----------------------------|---------------------------|---------------------------|---------------------------|----------------------------|--------------------------|--------------------------|--------------------------|----------------|------|------|----------------|
|        | 100   | 71          | 85                         | 95                         | 105                        | 109                        | 113                       | 115                       | 120                       | 125                        | 133                      | 137                      | 132                      | 127            | 122  | 116  | 111            |
|        | 94    | 68          | 85                         | 95                         | 103                        | 108                        | 111                       | 96.2<br>113               | <b>97.1</b><br>116        | <mark>89.5</mark><br>125   | <mark>88.5</mark><br>133 | <mark>88.6</mark><br>136 | <mark>92.4</mark><br>129 | 123            | 118  | 115  | 111            |
|        | 88    | 100.0<br>65 | 78                         | 96.2<br>86                 | 91                         | 98.1<br>99                 | 101.3<br>110              | 96.6<br>113               | <mark>92.4</mark><br>115  | <mark>84.8</mark><br>124 1 | <mark>85.7</mark><br>130 | <mark>85.8</mark><br>134 | <mark>87.2</mark><br>129 | 123            | 118  | 115  | 111            |
|        | 81    | 65          | <mark>92.4</mark><br>71    | <mark>101.9</mark><br>71   | 96.7<br>80                 | <mark>99.5</mark><br>86    | <mark>98.4</mark><br>100  | <mark>95.3</mark><br>108  | <mark>86.3</mark><br>110  | <mark>85.8</mark><br>118   | <mark>85.0</mark><br>127 | <mark>84.8</mark><br>129 | 127                      | 117            | 114  | 112  | 107            |
|        | 75    | 61          | 62                         | <mark>101.4</mark><br>60   | <b>99.0</b><br>60          | <b>99.6</b><br>60          | <mark>100.3</mark><br>80  | 95.7<br>88                | <mark>86.0</mark><br>104  | <mark>84.8</mark><br>109   | <mark>85.0</mark><br>115 | 120                      | 115                      | 111            | 105  | 107  | 102            |
|        | 69    | 101.9<br>58 | 98.2<br>57                 | 98.5<br>55                 | 99.5<br>55                 | 103.0<br>56 1              | <mark>101.5</mark><br>70  | 97.7<br>72                | <mark>90.7</mark><br>85   | <mark>85.6</mark><br>93    | <mark>84.8</mark><br>101 | 109                      | 106                      | 107            | 102  | 100  | 97             |
| м      | 63    | 102.1<br>55 | <mark>101.7</mark><br>50   | <mark>100.2</mark><br>51   | <mark>100.4</mark><br>50   | 102.5<br>53 3              | <mark>101.7</mark><br>65  | 96.7<br>68                | <mark>93.1</mark><br>75   | <mark>87.4</mark><br>84    | <mark>86.7</mark><br>90  | 99                       | 100                      | 100            | 100  | 100  | 90             |
| A<br>P | 56    | 98.1<br>50  | <mark>100.7</mark><br>51   | <mark>101.9</mark><br>44   | <mark>101.7</mark><br>49 1 | <mark>104.2</mark><br>50 2 | 96.5<br>55                | <mark>96.6</mark><br>59 1 | <mark>87.4</mark><br>63 1 | <mark>88.2</mark><br>72    | <mark>86.1</mark><br>74  | 80                       | 85                       | 90             | 90   | 90   | 85             |
| S      | 50    | 40          | <mark>100.8</mark><br>42 2 | <mark>101.2</mark><br>40 2 | <mark>103.9</mark><br>39 1 | 100.7<br>50                | <mark>92.8</mark><br>54 1 | <mark>88.0</mark><br>56 2 | <mark>88.1</mark><br>59 1 | <mark>87.5</mark><br>65    | <mark>85.9</mark><br>65  | 70                       | 74                       | 80             | 80   | 80   | 75             |
| N<br>S | 44    | 30          | 97.1<br>33 1               | <mark>99.0</mark><br>39 3  | <mark>101.6</mark><br>34 1 | <mark>99.0</mark><br>36    | <mark>88.5</mark><br>54 1 | <mark>86.5</mark><br>56 2 | <mark>85.2</mark><br>57 3 | <mark>85.1</mark><br>60    | <mark>84.8</mark><br>65  | 68                       | 68                       | 70             | 70   | 70   | 60             |
| R      | 38    | 20          | 95.0<br>25                 | 98.0<br>32                 | <mark>98.5</mark><br>33    | 97.1<br>31 2               | <mark>85.5</mark><br>52 2 | <mark>85.4</mark><br>51 4 | <mark>84.8</mark><br>51 4 | <mark>85.0</mark><br>58    | <mark>84.8</mark><br>58  | 58                       | 58                       | 60             | 60   | 60   | 55             |
|        | 31    | 18          | 24                         | <mark>90.0</mark><br>30    | <mark>93.8</mark><br>24 6  | <mark>95.5</mark><br>30 2  | <mark>86.2</mark><br>51 2 | <mark>85.0</mark><br>48 6 | <mark>84.8</mark><br>45 7 | <mark>84.8</mark><br>53    | <mark>84.8</mark><br>52  | 52                       | 55                       | 55             | 55   | 55   | 55             |
|        | 25    | 16          | 22                         | 28                         | <mark>87.2</mark><br>27 1  | 97.1<br>39 9               | <mark>89.8</mark><br>49 1 | <mark>86.8</mark><br>48 3 | <mark>84.8</mark><br>47 3 | <mark>84.8</mark><br>48    | <mark>84.8</mark><br>48  | 48                       | 48                       | 48             | 53   | 53   | 53             |
|        | 19    | 15          | 21                         | 26                         | 26                         | <mark>91.1</mark><br>44    | <mark>91.9</mark><br>45 1 | <mark>88.8</mark><br>46   | <mark>88.4</mark><br>47   | <mark>85.9</mark><br>45    | 45                       | 45                       | 50                       | 53             | 53   | 53   | 52             |
|        | 13    | 15          | 20                         | 24                         | 24                         | 41                         | <mark>100.4</mark><br>43  | <mark>100.0</mark><br>44  | 96.8<br>44                | <mark>86.7</mark><br>44    | 44                       | 45                       | 47                       | 50             | 50   | 50   | 50             |
|        | 6     | 15          | 20                         | 22                         | 22                         | 22                         | 22                        | 22                        | 100.0<br>22               | <mark>84.8</mark><br>25    | 27                       | 22                       | 22                       | 22             | 22   | 22   | 23             |
|        |       | 500         | 700                        | 900                        | 1100                       | 1300                       | 1600                      | 1900<br>RPM               | 2200                      | 2500                       | 2800<br>Runs Ri          | 3200<br>ich              | 3600                     | 4000<br>uns OK | 4500 | 5000 | 5500<br>s Lean |

c) **Main Fuel Map** - This is similar to the fuel map table seen with the software supplied by Holley.

The horizontal axis is engine RPM, and the vertical axis is MAP Sensor vacuum.

There are three fields that appear in each cell.



The number in the top is either:

\_....

- 1. Closed loop compensation when a narrow band oxygen sensor is installed. It will appear:
  - a. Red (rich) if the compensation is less than 90%.
  - b. Yellow (lean) if the compensation is greater than 100%.
  - c. Green (good) if the compensation is between 90% and 100%.

- 2. Air/Fuel ratio when a wide band oxygen sensor is installed. It will appear:
  - a. Red (rich) when the A/F ratio is 0.2 below the target value\*
  - b. Yellow (lean) when A/F ratio is 0.2 above target value\*
  - c. Green (good) when A/F ratio is within 0.2 of target value\*

\*Target A/F ratios are setup with Holley supplied software.

The number in the lower left is the lookup table value, same as seen with the Holley software. When locked, it will appear bold and underlined:



The number in the lower right is the number of times the auto-tune algorithm has modified the lookup table value.



d) Editing Individual Map Values – The lookup table value for any cell can altered and/or locked. After moving the mouse cursor to the desired cell, press the right mouse button to bring up the following panel:

| Map Val | ue           | 1        |
|---------|--------------|----------|
| 84      | <b>•</b>     | ⊻∣       |
| Lock    | ed           | X        |
|         | $\mathbf{i}$ | <b>,</b> |

Pressing this button will save the new value to the internal map:



Pressing this button will save the new value to both the internal map and the ECU:



e) **Fuel Map Updates -** Checking the following "Automatic Fuel Map Updates" option (below) allows the tuning algorithm to transmit new cell values to the ECU.

Automatic Fuel Map Updates

Note: This option is disabled in demo versions.

f) **Data Logging** – Checking the "Data Logging" option (below) will result in all sensor samples being saved to the file "RawSensorData.D95". The format of this file is the same as software supplied by Holley.

#### 🔲 Data Logging

g) Analysis Messages - While driving the vehicle, the following messages will appear in the analysis message box:

| Message                          | Description                                                                                                                       |  |  |  |
|----------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| NO – RPM is changing too much    | Tuning algorithm is rejecting sensor data because engine<br>RPM is changing too much.                                             |  |  |  |
| NO - coolant temperature too low | Tuning algorithm is rejecting sensor data because engine hasn't fully warmed up.                                                  |  |  |  |
| NO - MAT modifier too high       | Tuning algorithm is rejecting sensor data because incoming<br>air temperature is cold enough to require additional<br>enrichment. |  |  |  |
| NO - coolant modifier too high   | Tuning algorithm is rejecting sensor data because engine<br>temperature is cold enough to require additional<br>enrichment.       |  |  |  |
| NO - vehicle is decelerating     | Tuning algorithm is rejecting sensor data because RPM is inconsistent with TPS signal.                                            |  |  |  |
| NO - Engine not running          | Tuning algorithm is disabled.                                                                                                     |  |  |  |
| NO - no sensor data              | Tuning algorithm is disabled.                                                                                                     |  |  |  |
| YES                              | Tuning algorithm is enabled and processing sensor data.                                                                           |  |  |  |

Analyzing NO - coolant modifier too high

h) **Reading Data From Log Files** – This program can 'play back' sensor samples from previously recorded log files. Checking the "Read From Files" box (below) will bring up two dialogs. One for selecting the appropriate setup parameter file (\*.950) and another for the logged data file (\*.D95):



#### i) Engine Gauges

| ENGINE STATUS                |
|------------------------------|
| Speed                        |
| 0 2589 RPM 7000              |
| Throttle Position Sensor     |
| 0 47 250                     |
| Manifold Pressure Sensor     |
| 0 31 200                     |
| Wide Band Oxygen Sensor      |
| 10 12.15 A/F Ratio 20        |
| Water Temperature            |
| 0 158 F 250                  |
| Inlet Air Temperature        |
| 0 69 250                     |
| _Injector Duty Cycle         |
| 0 2.43 % 100                 |
| Idle Air Controller Position |
| 0 33 250                     |
| Closed Loop Compensation     |
|                              |

These gauges are updated approximately every 100 milliseconds.

j) **3D Viewing** – Pressing this button will show a three dimensional view of the fuel map:

2-D



Use these buttons to rotate the 3D graph up, down, left and right:



Press this button to "smooth" the fuel map:



#### Notes:

- **a.** The smoothing algorithm makes modest adjustments. It may be necessary to "smooth" more than once.
- b. Only 'unlocked' cells can be adjusted/smoothed.

Press this button to save the "smoothed" map to a text file for reference:

|--|

Press this button to send the "smoothed" map to the ECU:



#### k) Limitations:

- Closed loop operation only engine should be warmed up before use
- Speed Density Mode
- Only adjusts fuel map, no provision for adjusting spark map

#### 3. Operation

Once the engine is warm enough to begin closed operation, shut down the Holley software, and start this program. With the engine idling verify gauges are showing correct values. The fuel map should highlight the cell with the current RPM and MAP sensor reading. As the vehicle is driven, the highlighted cell should move around, and the status numbers should appear.

If "Automatic Fuel Map Updates" is checked, the auto-tune algorithm will attempt to make any necessary corrections to the lookup table values. It will then update the number in the lower right hand corner of the current cell. If the initial fuel map is relatively close, very few adjustments will be needed. If the map is off a lot, many adjustments will be needed.

The following output text files will be created:

| Filename                                                                              | Description                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RawSensorData.D95                                                                     | Unprocessed sensor values are appended to this file when data logging is<br>enabled. The format is the same as the Holley software, so this file can be<br>viewed graphically. For archiving purposes, rename this file at the end of<br>data logging. |
| ProcessedSensorData.txt                                                               | Processed sensor values are appended to this file when data logging is enabled.                                                                                                                                                                        |
| FuelMapUpdates.txt                                                                    | Fuel Map updates are appended to this file when this feature is enabled.                                                                                                                                                                               |
| EFI_Tuning.ini<br>Note: This file will be                                             | 1. Com Port number is saved as: $COM_PORT = n$<br>(where <i>n</i> is between 1 and 16)                                                                                                                                                                 |
| created if it doesn't exist.<br>Once cerated. It will be<br>updated whenever there is | Note: this setting is useful when there are many wireless com ports installed.                                                                                                                                                                         |
| a change to the com port<br>or runtime parameters.                                    | <ol> <li>The locked status of each fuel map cell.</li> <li>The last state (e.g. rich, lean) of each fuel map cell.</li> </ol>                                                                                                                          |

### 4. Technical Support

If you have any questions, please email them to tomzeect@netscape.net.