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I D S A L E C T U R E

Counterpoint: Long-Term Antibiotic Therapy
Improves Persistent Symptoms Associated
with Lyme Disease

Raphael B. Stricker
International Lyme and Associated Diseases Society, Bethesda, Maryland

(See the point by Auwaerter on pages 143–8)

Background. Controversy exists regarding the diagnosis and treatment of Lyme disease. Patients with persistent
symptoms after standard (2–4-week) antibiotic therapy for this tickborne illness have been denied further antibiotic
treatment as a result of the perception that long-term infection with the Lyme spirochete, Borrelia burgdorferi,
and associated tickborne pathogens is rare or nonexistent.

Methods. I review the pathophysiology of B. burgdorferi infection and the peer-reviewed literature on diagnostic
Lyme disease testing, standard treatment results, and coinfection with tickborne agents, such as Babesia, Anaplasma,
Ehrlichia, and Bartonella species. I also examine uncontrolled and controlled trials of prolonged antibiotic therapy
in patients with persistent symptoms of Lyme disease.

Results. The complex “stealth” pathology of B. burgdorferi allows the spirochete to invade diverse tissues, elude
the immune response, and establish long-term infection. Commercial testing for Lyme disease is highly specific
but relatively insensitive, especially during the later stages of disease. Numerous studies have documented the
failure of standard antibiotic therapy in patients with Lyme disease. Previous uncontrolled trials and recent placebo-
controlled trials suggest that prolonged antibiotic therapy (duration, 14 weeks) may be beneficial for patients with
persistent Lyme disease symptoms. Tickborne coinfections may increase the severity and duration of infection with
B. burgdorferi.

Conclusions. Prolonged antibiotic therapy may be useful and justifiable in patients with persistent symptoms
of Lyme disease and coinfection with tickborne agents.

Lyme disease is a controversial illness [1–6]. The classic

features of the disease include receipt of a tick bite

followed by the so-called erythema migrans or “bul-

lseye” rash and significant joint swelling typical of ar-

thritis. Unfortunately, the classic features of this tick-

borne disease are not always present. For example, only

50%–60% of patients with Lyme disease recall having

received a tick bite, and often the erythema migrans

rash is absent or not in the shape of a bullseye [5, 6].

According to health departments around the United

States, the typical bullseye rash is only reported in 35%–
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60% of patients with Lyme disease [7, 8]. Furthermore,

frank arthritis is only seen in 20%–30% of patients with

Lyme disease [1, 2]. Thus, the classic features of the

disease may be absent, and the diagnosis may be easily

missed [1–4].

In the absence of typical features of Lyme disease,

patients may go on to develop a syndrome with mul-

tiple nonspecific symptoms that affect various organ

systems, including the joints, muscles, nerves, brain,

and heart. The myriad symptoms prompt the question

whether this is “post–Lyme disease syndrome,” a poorly

defined entity triggered by Lyme disease, or whether

these symptoms are caused by persistent infection with

the Lyme spirochete, Borrelia burgdorferi. To address

this question, we must first examine the pathophysi-

ology of the disease.

PATHOPHYSIOLOGY OF LYME DISEASE

B. burgdorferi is a fascinating bacterium [9, 10]. It has

11500 gene sequences with at least 132 functioning
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genes. In contrast, Treponema pallidum, the spirochetal agent

of syphilis, has only 22 functioning genes. The genetic makeup

of B. burgdorferi is quite unusual. It has a linear chromosome

and 21 plasmids, which are extrachromosomal strands of DNA.

This is 3 times more plasmids than any other known bacteria

(Chlamydia comes in a distant second, with 7 plasmids). Plas-

mids are thought to give bacteria a kind of “rapid response”

system that allows them to adapt very rapidly to changes in

the environment, and the complex genetic structure of B. burg-

dorferi suggests that this is a highly adaptable organism [9, 10].

In addition to its complex genetic makeup, B. burgdorferi

engages in so-called “stealth pathology” to evade the human

immune response [11–50]. Stealth pathology involves 4 basic

strategies: immunosuppression; genetic, phase, and antigenic

variation; physical seclusion; and secreted factors (table 1).

These strategies are outlined below.

IMMUNOSUPPRESSION

During a tick bite and before transmission of the Lyme spi-

rochete, tick saliva containing analgesic, anticoagulant, and im-

munosuppressive factors is expressed into the wound, allowing

the spirochete to penetrate the skin and evade the local immune

response [11–13]. B. burgdorferi also induces immunosup-

pression by complement inhibition and induction of inhibitory

cytokines, such as IL-10. In addition, the bacterium induces

monocyte and lymphocyte tolerization and antibody seques-

tration in immune complexes—all mechanisms of evading the

immune response [14–19].

GENETIC, PHASE, AND ANTIGENIC VARIATION

B. burgdorferi engages in genetic, phase, and antigenic variation

that shares various features with other organisms [20–23]. For

example, gene switching is similar to what is seen with try-

panosomes, mutation and recombination are typical of HIV,

variable antigen expression is seen with Neisseria species, au-

toinduction of dormant organisms occurs in mycobacterial in-

fection, and fibronectin binding occurs with staphylococcal and

streptococcal infection.

B. burgdorferi may assume a dormant state with cyst for-

mation [24–29]. Although spirochetal persistence in the cyst

form is a controversial issue, it has recently been shown that

neutrophil calprotectin can induce a dormant state in the spi-

rochete, allowing it to persist in tissue without replicating and

providing the means to avoid antibiotics [30].

Although antibiotic resistance associated with gene mutation

was previously thought to be rare in B. burgdorferi infection

[31], recent studies have demonstrated gene mutations in the

Lyme spirochete that confer in vitro resistance to various an-

tibiotics [32, 33]. The clinical implication of these gene mu-

tations is uncertain at present.

PHYSICAL SECLUSION

The Lyme spirochete uses physical seclusion at intracellular sites

as a means of evading the immune response in multiple cell

types, including synovial cells, endothelial cells, fibroblasts,

macrophages, Kupffer cells, and neuronal cells [34–43]. In cul-

ture, B. burgdorferi can be grown in fibroblasts for 18 weeks,

suggesting that the organism can thrive over long periods of

time in the right place and under the right conditions.

Physical seclusion at extracellular sites, including the joints,

eyes, and CNS, may also promote survival of the Lyme spi-

rochete. In addition, B. burgdorferi engages in “cloaking” mech-

anisms by binding to proteoglycan, collagen, plasminogen, in-

tegrin, and fibronectin. These substances can mask the

bacterium and make it invisible to the immune system

[38–42].

SECRETED FACTORS

There are a number of factors that are secreted either by B.

burgdorferi itself or in response to infection with the spirochete

[44–51]. For a number of years, it has been known that B.

burgdorferi secretes a hemolysin, although its function is un-

certain [44]. More recently, the spirochete has been shown to

elaborate porin and adhesin, 2 proteins that allow bacteria to

adhere to cells and pierce the cell wall to gain entry [45].

Even more recently, B. burgdorferi was found to secrete pher-

omones, including AI-2, which is also secreted by mycobacteria

[46–50]. This is the first time that a spirochete has been shown

to secrete an autoinducer and suggests that the Lyme spirochete

engages in autoresuscitation like other dormant organisms,

such as the tubercle bacillus [46–50]. In addition, B. burgdorferi

can induce secretion of aggrecanase, an enzyme that damages

cartilage [51]. This may be a mechanism by which the bacte-

rium induces damage and inflammation in joints. Armed with

these weapons of “stealth pathology,” the Lyme spirochete is a

formidable infectious agent.

LABORATORY TESTING

Let’s turn briefly to laboratory testing in Lyme disease. A major

problem is that current commercial Lyme serologic tests are

not sensitive enough for diagnosis, especially during the later

stages of disease [52–64]. The Centers for Disease Control and

Prevention (CDC) advocates a “2-tier” testing system using an

ELISA or immunofluorescence assay as a screening test, fol-

lowed by a Western blot for confirmation if the result of the

ELISA or immunofluorescence assay is positive. The CDC cau-

tions, however, that the 2-tier system should only be used for

surveillance purposes and not for diagnosis, and the reason for

this warning is clear: although the 2-tier system has a very high

specificity (99%–100%), thus avoiding the false-positive results

that are the bane of surveillance statistics, it has relatively poor
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Table 1. “Stealth” pathology of Borrelia burgdorferi.

Immunosuppression
Tick saliva components
Complement inhibition
Inhibitory cytokine induction (IL-10)
Lymphocyte/monocyte tolerization
Antibody sequestration in immune complexes

Genetic, phase, and antigenic variation
Gene switching (trypanosomes)
Mutation/recombination (HIV)
Variable antigen expression (Neisseria species)
Dormant state, autoinduction (Mycobacterium species)
Fibronectin binding (Staphylococcus and Streptococcus species)

Physical seclusion
Intracellular sites

Multiple cell types (synovial cells, endothelial cells, fibroblasts,
macrophages, Kupffer cells, and nerve cells)

Persistent infection in vitro (8 weeks)
Extracellular sites

Privileged sites (joints, eyes, and CNS)
Cloaking mechanisms (binding to proteoglycan, collagen,

plasminogen, integrin, and fibronectin)
Secreted factors

Hemolysin (BlyB)
Porin (Oms 28)
Adhesin (Bgp)
Pheromones (DPD/AI-2)
Aggrecanase (ADAMTS-4)

NOTE. See text for explanation and references.

sensitivity (50%–75%), which limits its use as a diagnostic test

for individual patients.

Other problems with current Lyme disease testing include

omission of highly specific bands from the commercial Western

blot, sex differences in test reactivity, and limitations of mo-

lecular testing, and these issues have been discussed in detail

elsewhere [1, 56, 60–63]. Thus, the diagnosis of Lyme disease

remains problematic, with as many as one-half of patients ex-

periencing failure with the current 2-tier testing approach

[52–64].

TREATMENT OF LYME DISEASE

With this background concerning the clinical diagnostic prob-

lems, complex pathophysiology, and testing difficulties related

to B. burgdorferi, we arrive at the topic of this debate, which

is treatment failure in Lyme disease. Documented treatment

failure with culture-confirmed B. burgdorferi infection was first

reported 117 years ago by Preac-Mursic et al. [65], so it was

surprising to see a quotation in the New York Times by 2 mem-

bers of the Infectious Diseases Society of America (IDSA) Lyme

disease guidelines committee stating that “[there] is no credible

scientific evidence for the persistence of symptomatic B. burg-

dorferi infection after antibiotic treatment” [66]. Let’s review

the “credible scientific evidence” for persistence of this infection

taken from articles published over the past 17 years.

ANIMAL MODELS

We can start with animal models of Lyme disease [67–75]. In

the mouse, one study found that “persistence of spirochetes

within macrophages provides a possible pathogenetic mecha-

nism for chronic or recurring Lyme disease” [67, p. 909]. In

another study, “nine months after treatment, low levels of spi-

rochete DNA could be detected by real time PCR in a subset

of antibiotic treated mice” [68, p. 1430]. So at least in the

mouse model, spirochetes may persist after appropriate

treatment.

Next is the dog model—a particularly convincing model,

because Straubinger et al. [69] revealed that, in dogs that had

been experimentally infected with B. burgdorferi by tick ex-

posure, treatment with high doses of amoxicillin or doxycycline

for 30 days diminished persistent infection but failed to elim-

inate it. Furthermore, when dogs were observed for a 500-day

postinfection period (the equivalent of 3–4 human years), B.

burgdorferi DNA was detectable at low levels in multiple tissue

samples obtained from the dogs, despite the administration of

“adequate” antibiotic treatment [70].

Finally, in a model using our closest relative, the nonhuman

primate macaque monkey, Pachner and colleagues [71–75]

found that neurologic and cardiac disease were associated with

persistent infection in these monkeys, and cytokine and gene

expression related to persistent B. burgdorferi infection could

be demonstrated 13 months after infection. In summary, these

animal models provide “credible scientific evidence” for per-

sistent infection in Lyme disease.

HUMAN STUDIES

Turning to human studies, there are a number of reports that

show persistent symptoms of Lyme disease after short-term

antibiotic therapy [76–96]. Persistent symptoms have been

noted in 25%–80% of patients with Lyme disease after 2–4

weeks of antibiotic therapy [76–87]. Furthermore, infection

that was determined to be persistent on the basis of either

culture or PCR evidence has been documented in up to 40%

of patients following receipt of the “adequate” antibiotic treat-

ment recommended by the IDSA [88–96]. For example, pos-

itive culture and PCR results were found in synovium and

synovial fluid specimens obtained from a patient 7 years after

treatment [92], and a positive result was reported for a culture

of an iris biopsy specimen obtained from a treated patient [93].

These reports suggest that short-term antibiotic therapy may

suppress the Lyme spirochete but not eradicate it.

In another case, the patient’s condition deteriorated despite

receipt of repeated courses of antibiotic treatment over a 2-



Table 2. Results of placebo-controlled trials of antibiotic treatment in chronic Lyme disease.

Study Year Treatment Results Comments

Klempner et al. [101] 2001 IV Ctri for 4 weeks followed by oral
doxycycline for 2 months vs.
placebo

No improvement in fatigue
or quality of life

Study was criticized because subjects had been
sick an average of 4.7 years, and similar treat-
ment had already failed; the treatment regimen
was inadequate for degree of functional impair-
ment [104]

Krupp et al. [102] 2003 IV Ctri for 4 weeks vs. placebo SI in fatigue noted in 64% of treatment group,
compared with 19% of control group; no im-
provement in cognition

The exact duration of illness was not stated (at
least 6 months), and the treatment duration
was relatively short; previously untreated pa-
tients fared significantly better than control
subjects in terms of fatigue improvement (69%
vs. 0%; P ! .01)

Fallon [105] 2005 IV Ctri for 10 weeks vs. placebo SI in cognitive and physical functioning at 12
weeks in treatment group, compared with con-
trol group

Improvement in physical functioning but not cog-
nitive functioning was sustained in the treat-
ment group at 24 weeks

Cameron [106] 2005 Oral amoxicillin for 3 months vs.
placebo

SI in cognitive and physical functioning in treat-
ment group, compared with control group

Treatment was successful in two-thirds of the pa-
tients who had the best initial quality of life,
but it failed in one-third of the patients who
had the worst initial quality of life

NOTE. IV Ctri, intravenous ceftriaxone; SI, significant improvement.
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Table 3. Precedents for prolonged antibiotic therapy.

Disease Organism Treatment
Duration of

treatment, months

Drug-susceptible tuberculosis Mycobacterium tuberculosis 2–4 antibiotics 6–9
Multidrug-resistant tuberculosis M. tuberculosis 3–5 antibiotics 18–24
Leprosy Mycobacterium leprae 3–4 antibiotics 24
Atypical tuberculosis Mycobacterium chelonae Oral and intravenous antibiotics 6–12
Q fever endocarditis Coxiella burnetii 2 antibiotics 36

NOTE. Data are based on [143–147].

year period. She received 12 months of intravenous antibiotic

treatment, followed by 11 months of oral antibiotics, and her

condition improved significantly [95]. Thus, this case report

suggests that longer treatment may be beneficial in some pa-

tients with Lyme disease. Taken as a whole, these studies provide

“credible scientific evidence” for persistence of B. burgdorferi

infection after “adequate” short-term antibiotic treatment in

humans.

That brings up the next question: does longer antibiotic treat-

ment help in persistent Lyme disease? There have been a num-

ber of uncontrolled trials that support longer treatment of per-

sistent disease symptoms [97–100]. The largest study included

277 patients who were treated with tetracycline for 1–11 months

(mean duration, 4 months). The study showed that, after 2

months of therapy, 33% of patients had improvement in symp-

toms, but after 3 months of treatment, 61% of patients had

decreased symptoms [97]. So this study suggests that longer

treatment may result in better symptom outcome in Lyme dis-

ease. There have been other small, uncontrolled trials showing

that longer treatment may have better symptom outcomes in

patients with Lyme disease, including one trial that showed that

patients who were re-treated with intravenous therapy had the

greatest improvement in their symptoms [98–100].

In contrast to these uncontrolled trials, 2 randomized, pla-

cebo-controlled trials examined re-treatment of patients with

persistent symptoms of Lyme disease (table 2) [101, 102].

Krupp et al. [102] studied 1 month of intravenous ceftriaxone,

whereas Klempner et al. [101] studied 1 month of intravenous

ceftriaxone followed by 2 months of oral doxycycline. The

Krupp study showed improvement in fatigue with its 30-day

treatment regimen, whereas the Klempner study showed no

improvement in quality of life following re-treatment for 90

days. The main problem with these studies is that they included

patients who had been symptomatic for an average of 4–5 years,

and treatment with 1 month of intravenous antibiotics, with

or without low-dose doxycycline, is insufficient for patients

who have been sick this long [103, 104]. Thus, the generaliz-

ability of results in these highly selected patients with persistent

Lyme disease is questionable [104].

In contrast to these studies, 2 placebo-controlled trials were

presented in 2005 at the Columbia/Lyme Disease Association’s

annual meeting (table 2) [105, 106]. One study involved oral

amoxicillin for 3 months versus placebo for previously treated

patients, and re-treatment was successful for the two-thirds of

patients with the best initial quality of life. A second study

administered intravenous ceftriaxone for 10 weeks to patients

with persistent neurologic symptoms of Lyme disease, and these

patients had significant cognitive improvement with this treat-

ment. We look forward to publication of these 2 placebo-con-

trolled trials, which show that longer courses of antibiotic ther-

apy are useful in patients with persistent Lyme disease.

COINFECTION WITH TICKBORNE AGENTS

In addition to infection with B. burgdorferi, tickborne coinfec-

tions are being recognized more frequently. If a patient is treated

for Lyme disease and has symptoms that have persisted or

worsened, the lack of improvement may be due to the presence

of Babesia, Anaplasma, Ehrlichia, or Bartonella coinfection

[107–126]. Coinfection with Babesia and Ehrlichia has been

shown to exacerbate Lyme disease in mouse models [108–110]

and also in humans [111–118]. Traditionally, Babesia, Ana-

plasma, Ehrlichia and Bartonella are thought to produce acute

fulminant infections, but in fact these pathogens may cause

low-grade infections that can increase the severity and duration

of Lyme disease [119–125].

A disturbing study from New Jersey examined the prevalence

of coinfections in Ixodes ticks that transmit Lyme disease [126].

In that study, the prevalence of B. burgdorferi infection was

33.6%, but the prevalence of Bartonella infection was 34.5%.

Thus, Bartonella species were found more often than the Lyme

spirochete in these ticks. This observation presages a greater

problem with Bartonella infection associated with tick exposure

in the near future.

TREATMENT APPROACH TO CHRONIC LYME
DISEASE

What is the approach for a patient who presents with persistent

symptoms of Lyme disease [127–140]? First, the Lyme Western

blot should be repeated, and coinfection testing should be per-

formed by a laboratory that is proficient in tickborne disease

analysis. At the same time, other medical problems that could
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cause persistent symptoms should be ruled out. Measurement

of the CD57 natural killer cell level, which is an immunologic

marker that can be used to monitor treatment in chronic Lyme

disease, should be performed [129–131]. If neurologic symp-

toms are severe, a single-photon emission CT SPECT brain

scan should be obtained, to see how much inflammation is

present in the brain. Neuropsychiatric evaluation may also be

helpful [132].

On the basis of these results, coinfections should be treated

first, if any are present, and then oral or parenteral antibiotics

should be used to treat symptoms of persistent Lyme disease.

Antibiotic therapy should be administered in a rotating and

open-ended manner, in conjunction with probiotics, to min-

imize adverse effects [133–136]. Monitoring of clinical symp-

toms, CD57 natural killer cell levels, and markers of inflam-

mation should be performed in conjunction with treatment

[137–140].

This approach differs from the recommendations of the cur-

rent IDSA guidelines, which do not recognize persistent infec-

tion in chronic Lyme disease [141]. However, the treatment

approach is consistent with the guidelines of the International

Lyme and Associated Diseases Society, which mandates treat-

ment for persistent infection in patients with chronic Lyme

disease symptoms [142]. It is helpful to recall that B. burgdorferi

shares certain pathophysiological features with mycobacterial

infection and other chronic infections (table 1), that these in-

fections may require prolonged antibiotic therapy (6–36

months), and that the risks of long-term treatment are con-

sidered justifiable in those situations (table 3) [143–147]. On

the basis of the foregoing discussion, prolonged antibiotic ther-

apy appears to be useful and justifiable in chronic Lyme disease.

In summary, 118,000 scientific articles have been written

about Lyme disease. Some of these articles focus on the complex

pathophysiology of B. burgdorferi, whereas others highlight the

clinical uncertainty surrounding tickborne disease. Because the

optimal therapy for this complicated illness is still in doubt,

we must keep an open mind about the treatment of patients

who present with persistent symptoms of Lyme and associated

tickborne diseases.
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