\qquad PER \qquad
MARINE ScIENCE
DATE: \qquad
Directions: Use the Longitude Circle provided to fill in the chart. Remember: 1 hour $=15^{\circ}$ so $4 \mathrm{~min}=1^{\circ}$
If I can see Polaris I am in what hemisphere: \qquad If I see Sigma Octantis I am in what hemisphere: \qquad
Write in the longitude, latitude, and location of each example below. The location will be the nearest location that someone could walk on.

STEPS TO USE THE LONGITUDE CIRCLE:

1. Find the time at Greenwich, England (GMT) on the circle.
2. Find the local time (LT) on the circle also.
3. Go from GMT to local time around the circle taking the shortest route possible. (Determine the \# of hours and minutes and use the $1 \mathrm{hr}=15^{\circ}$, or $4 \mathrm{~min}=1^{\circ}$ to determine the total degrees).
4. The direction you go tells you whether longitude is east (E) or west (W).

Ex: GMT=2:40pm LT=8:10am
Difference is 6hrs 30 min
Start @ 2:40 pm go to 8:10 am so go ccw or WEST.
$1 \mathrm{hr}=15^{\circ}$ so $6 \mathrm{hrs}=90^{\circ} \&$ a half hr is 7.5°
This is $90^{\circ}+7.5^{\circ}=97.5^{\circ} \mathrm{W}$

Fill in the Latitude, Longitude, \& Location in the chart:

Problem \#	GMT	Local Time	Sigma Octantis	Polaris	Latitude	Longitude	Location
1.	2 PM	10 AM	$50{ }^{\circ}$				
2.	6:35 PM	6:55 PM		60°			
3.	3:30 AM	2:30 PM	65°				
4.	9:17 PM	7:17 AM		75°			
5.	7:12 PM	4:52 PM	5°				
6.	2:46 AM	2:46 PM		30°			
7.	12:37 AM	8:37 PM	66°				

