<u>Half-life:</u> the amount of time it takes for one half of a sample of a radioactive substance to decay to the daughter isotope. The time may be in years (y) or days (d) or hours (h) or seconds (s).

to the daughter loctope. The time may be in years (y) or days (a) or hours (n) or seconds (b).							
atomic components:	<u>symbol</u>	<u>name</u>	<u>mass</u>	<u>charş</u>	<u>ge loca</u>	<u>tion</u>	
	p^+	proton	1	+	nuo	cleus	
	n^0	neutron	1	noi	ne nu	cleus	
	e ⁻	electron	.0005	-	ou	tside the nucleus	
particles or energy	<u>symbol</u>	<u>name</u>		<u>mass</u>	<u>charge</u>		
emitted from a	α	alpha parti	cle	4	++	(stopped by sheets of paper)	
radioactive atom:	β	beta particl	le	.0005	-	(stopped by .1 in. of lead)	
	$eta^{\scriptscriptstyle +}$	positron		.0005	+	(stopped by .1 in. of lead)	
	γ	gamma rad	liation	none	none	(like x-rays, it is dangerous)	

<u>Decay Problems:</u> example:

	$50_{\rm S}n_{120}$ >	⁴⁸ Cd ₁₁₆	note:	α emission	a. lose 2 protons
					b. lose 4 units of mass
1.	95Am_{243} >			β emission	a. gain 1 proton
					b. mass stays the same
2.	⁵⁷ La ₁₄₀ >			$\beta^{\scriptscriptstyle +}$ emission	a. lose 1 proton
					b. mass stays the same
3.	$^{27}\text{Co}_{56}$ >			γ emission	a. no gain or loss

4.	38Sr ₉₀	>
• •	0 1 7()	ρ ,

8.
$$62 \text{Sm}_{148}$$
 ----->

5.
44
Ru₁₀₃ ----->

9.
$$58\text{Ce}_{144}$$
 ----->

7.
$${}^{6}C_{14}$$
 ----->

11.
$$^{19}K_{40}$$
 ----->

Radioactive Dating & Half Lives:

The age of a material can be determined if the ratio of parent isotope to daughter isotope can be measured. The assumption is that there was no daughter isotope to begin with and that daughter isotope formed did not escape.

AGE = (#half lives past) x (the half life of the element)

Given: the half-life of ${}^6\mathrm{C}_{14}$ (also C-14) is 5600 years.

the half-life of 19 K₄₀ (also K-40) is 1.3×10^9 years (1300000000).

PROBLEMS:

- 1) How long would it take for a 100g sample of ${}^6C_{14}$ to decay so that there were 25 g of ${}^6C_{14}$ and 75 g of ${}^7N_{14}$? Show your work!:
- 2) A 100 g sample of ¹⁹K₄₀ decays through 4 half lives...how much ¹⁹K₄₀ is still left? Show your work!: