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Gender similarities in the brain during mathematics
development
Alyssa J. Kersey 1,2*, Kelsey D. Csumitta 1 and Jessica F. Cantlon 1,3

Some scientists and public figures have hypothesized that women and men differ in their pursuit of careers in science, technology,
engineering, and mathematics (STEM) owing to biological differences in mathematics aptitude. However, little evidence supports
such claims. Some studies of children and adults show gender differences in mathematics performance but in those studies it is
impossible to disentangle intrinsic, biological differences from sociocultural influences. To investigate the early biology of
mathematics and gender, we tested for gender differences in the neural processes of mathematics in young children. We measured
3–10-year-old children’s neural development with functional magnetic resonance imaging (fMRI) during naturalistic viewing of
mathematics education videos. We implemented both frequentist and Bayesian analyses that quantify gender similarities and
differences in neural processes. Across all analyses girls and boys showed significant gender similarities in neural functioning,
indicating that boys and girls engage the same neural system during mathematics development.
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INTRODUCTION
Limited evidence for intrinsic, biological gender differences in
mathematics ability has fueled debate about the underrepresen-
tation of girls and women in STEM fields (science, technology,
engineering, and mathematics). Some have suggested that girls
and women are underrepresented in careers in STEM owing to
biological differences.1 Biological sex differences manifest in
aspects of brain function, particularly those related to neuroen-
docrinology,2–4 but many measures indicate that neural variability
is a continuum wherein the brains of males and females reflect
one heterogenous population rather than two distinct groups.4 In
the domain of mathematics, the evidence for biologically based
gender differences is weak because when gender differences are
observed, the studies fail to differentiate intrinsic biological factors
from sociocultural ones.5–9 Moreover, behavioral studies often find
no gender differences in mathematical cognition in early child-
hood, and there are no prior functional neuroimaging studies of
biological gender differences in mathematical cognition during
early childhood.5,8–13 In order to understand the origins of
mathematics ability, and whether there are any gender differ-
ences, it is important to ask whether boys and girls begin
development with biological differences in mathematical proces-
sing. Here, we combine frequentist and Bayesian statistical
approaches to test for gender similarities and differences in the
neural processing of mathematics during early childhood. We use
“gender” instead of “sex” throughout this manuscript, which
accords with the relevant literature,12–14 and because we collected
parental report of children’s gender and did not measure their
chromosomes.
Although evidence for behavioral gender differences in

mathematics is weak in older children, adolescents, and adults,
it is important to consider when and how any differences might
emerge. One possibility is that despite established gender
similarities on behavioral tasks in early childhood,5,10,12,13 the
underlying biological or neural processes could differ between
boys and girls. For example, boys’ and girls’ incorrect responses

could result from different neural processes (e.g., inefficient
recruitment of math processing regions vs inefficient response
selection mechanisms). Boys’ and girls’ error rates could yield the
same levels on behavioral tests of mathematics but the biology
that underlies the errors in each gender group could differ.
Alternatively, boys and girls may show significant, widespread
biological similarities in the neural processes of mathematics
during early childhood. This outcome would be consistent with
yet untested claims that boys and girls share a core biology for
mathematical cognition.
To compare the neural processes underlying mathematics

development, we used functional magnetic resonance imaging
(fMRI) to measure neural activity in 3–10-year-old children while
they watched video clips that targeted early childhood mathe-
matics skills (e.g., counting, addition; see Methods for more
details). In total, 104 children (55 girls) participated in one of three
natural viewing tasks (2 published studies15,16+ 1 unpublished
study, under review). Data were combined across natural viewing
tasks by normalizing each subject to a within-task adult baseline
using intersubject correlations.17 This approach yields 80% power
to achieve a medium-effect size of d= 0.55, p < 0.05 for
independent samples t tests.
Intersubject correlations were conducted by comparing each

child with every other child and comparing each child with every
adult within a comparison group (63 total adults, 25 women, who
watched one set of video clips). This resulted in an index of ‘neural
maturity’ (child-to-adult intersubject correlations) and an index of
‘neural similarity’ (child-to-child intersubject correlations). The
majority of analyses focus on similarities and differences in ‘neural
maturity’, which indicates how well-developed and adult-like each
child’s brain is during mathematical processing.15,16 Neural
maturity was calculated by conducting intersubject correlations17

of the neural timecourses across the entire video between
children and adults in every voxel of the brain (see Methods for
details). Thus, it assesses the degree to which children’s neural
activity resembled that of adults who watched the same video and
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allows the data to be combined across studies in a meaningful
way. Within-child comparisons of neural maturity calculated to
women vs men revealed that children’s neural maturity did not
statistically differ based on the gender of the adult comparison
group (see Methods for details). Therefore, for each child, their
measure of neural maturity is averaged across all adults who
watched the same video.
Girls’ and boys’ neural maturity were statistically compared

across five whole-brain analyses which test for differences in mean
neural maturity, similarities in mean neural maturity, differences in
variance of neural maturity, and differences in the rate of
mathematics development. First, we conducted frequentist
statistical tests of differences (two-sided, independent samples t
tests) and similarities in neural maturity. Similarities in mean
neural maturity were assessed using statistical equivalence
statistics. Testing for statistical equivalence is critical for evaluating
gender similarities because a null result from a t test only suggests
that there is not enough evidence to conclude that a difference
exists—to address this we conducted a statistical test of similarity,
Schuirmann’s Test of Equivalence.18 This test uses two one-sided t
tests to determine the likelihood that the mean difference
between two groups falls within a specified similarity range
(consistent with previous work that tested for similarities and
differences in SAT scores, we used a similarity range of 2/3 of a
standard deviation19). Complementary to this approach, we
conducted a Bayes Factor analysis, which also allows for the
interpretation of both significant differences and significant
similarities. The Bayes Factor analysis weighs the evidence for an
alternative hypothesis against the evidence for the null hypothesis
by taking the ratio of the posterior probabilities for the two
hypotheses (the Bayes Factor). Bayes Factors > 3 indicate
substantial, interpretable evidence for the corresponding hypoth-
esis, and Bayes Factors < 3 suggest that the evidence is only
anecdotal. Following previous work,13 the prior for the alternative
hypothesis of gender differences was the default Cauchy
distribution centered on the prior for the null hypothesis with a
width of 0.707. The prior for the null hypothesis was 0. To test for
differences in neural variance between boys and girls across the
whole brain, we used Levene’s Test of Variance. Some have
claimed that differences in the upper and lower tails of the
distributions drive gender differences.20 Variance thus is an
important measure because previous work shows that gender
differences in variance can exist even when mean performance is
the same.10,21 Following the whole-brain analyses, we present
more-detailed region-of-interest analyses on regions of the
number processing network (bilateral intraparietal sulcus, bilateral
inferior frontal gyrus, and anterior cingulate cortex), which were
defined from an independent functional localizer scan. In a final
analysis, we calculated intersubject correlations across children to
obtain measures of within-gender and between-gender neural
similarity. We then directly compared children’s neural similarity as
calculated with children of the same and of the different gender. If
gender differences in neural activity have a biological categorical
origin rooted in childhood, these categorical differences should be
evident in the brain. In contrast, if gender differences in neural
activity do not originate from categorical differences in early
childhood, there should instead be widespread similarities.

RESULTS
Frequentist and Bayesian comparisons of neural maturity
We used intersubject correlations to compare girls’ and boys’
temporal patterns of neural activity across the whole brain during
the educational videos. First, we compared girls’ and boys’ overall
neural maturity using frequentist statistics. A whole-brain t test
revealed no differences in neural maturity between groups
(threshold= t(102) ≥ 2.36, voxel-wise p ≤ 0.01, cluster corrected

to p < 0.05, cluster threshold= 29 voxels). Next, gender similarities
were assessed using Schuirmann’s Test of Equivalence.18 Findings
of statistical equivalence would suggest that children’s neural
processing of mathematics comprises one heterogenous group
rather than two distinct gender groups. In fact, girls and boys
showed statistically equivalent levels of neural maturity through-
out the brain (Fig. 1a, light purple; minimum t(102) ≥ 2.36,
maximum one-sided p ≤ 0.01), suggesting that the neural
processing of mathematics develops at similar rates in boys and
girls. In terms of differences in neural variance, Levene’s Test of
Variance revealed one small region of right posterior parietal
cortex where groups differed in variance but not in mean
activation, with girls showing greater variance than boys (TAL
peak: 18, −64, 43; F(1,102) ≥ 6.89, voxel-wise p ≤ 0.01, cluster
corrected to p < 0.05, cluster threshold= 11 voxels, Supplemen-
tary Fig. 1). This variance cluster was small (15 voxels) and girls
exhibited more variance than boys at equal neural amplitudes to
boys, which did not result in a mean difference between groups in
this region.
The pattern of large-scale statistical similarities between boys

and girls from the frequentist analyses was replicated in the
Bayesian analysis. In each voxel of the brain, the weight of
evidence for the null and alternative hypotheses were indexed by
the Bayes factor (B01 for the null hypothesis of gender similarities,
B10 for the alternative hypothesis of gender differences). Bayes
factors suggesting that the data provide substantial support of the
hypotheses are displayed in Fig. 1b (B01 > 3, in purple indicating
gender similarities, B10 > 3 in orange indicating greater neural
maturity in girls; no cortical regions showed substantial support
for greater neural maturity in boys). Less than 1% of voxels (0.8%)
showed substantial or strong (B10 > 10) evidence of gender
differences (Fig. 1b; 23.6% voxels did not substantially support
either similarities or differences in the Bayesian analysis).

Similarities in math processing networks
Importantly, across all three natural viewing tasks, children
engaged numerical processes in the brain. Children showed
number-selective neural activation in the intraparietal sulci (IPS)
during the mathematics content in the educational videos (Fig. 2)
consistent with previous fMRI research on numerical cognition in
children and adults.15,16 Boys and girls showed equivalent
mathematics-related neural responses (see Fig. 2). This is evidence
that children engaged mathematical neural processes during the
educational videos, and that boys and girls did so equally.
Next, we compared the rate of mathematics development in

boys and girls. Ninety-seven children completed the Test of Early
Mathematics Ability to evaluate their mathematics skills (TEMA-
322; n= 50 girls, 3.12–8.96 years; 47 boys, 3.33–9.08 years). Math
ability was statistically equivalent across children and did not
show gender differences in mean ability or variance (Fig. 3a; t test:
t(95)= 0.57, p= 0.57, girls’ mean= 33.62, boys’ mean= 35.96,
95% CI=−10.42–5.74; Tests of Equivalence: t1(95)= 3.84, p <
0.001, t2(95)=−2.70, p= 0.004; Test of Variance: F(1,95)= 0.29, p
= 0.59, girls’ sd= 20.19, boys’ sd= 19.87; descriptively there were
more girls than boys in the upper tail of the distribution: 14 girls
and 10 boys). Nor did the relation between gender and math
ability change across age (Fig. 3a; Regression of TEMA-3 on gender
and age: R2= 0.79, F(3,93)= 118.5, p < 0.0001, Gender: b= 1.22, t
(93)= 0.163, p= 0.871; Age: b= 11.74, t= 13.97, p < 0.0001;
Gender × Age Interaction: b= 0.26, t= 0.21, p= 0.84). These
behavioral data were previously included as part of a larger
behavioral study that showed no differences and statistical
equivalence in math ability in this age group.12

We then identified mathematical processing networks by
testing for regions that showed higher neural maturity in children
with stronger math skills. Math ability, gender, and the interaction
between math ability and gender were entered as predictors of
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neural maturity in a whole-brain regression. This regression
revealed that math ability predicted neural maturity in both
gender groups in the IPS, prefrontal cortex, and middle temporal
gyrus (Fig. 3b; t(93) ≥ 2.63 voxel-wise p ≤ 0.01, cluster corrected to
p < 0.05, girls: r(48) ≥ 0.36 with cluster threshold of 109 voxels,
boys: r(45) ≥ 0.37 with cluster threshold of 69 voxels, see
Supplementary Fig. 2 for separate maps). These regions are
consistent with those that show a correlation between neural
maturity and math ability when collapsed across gender (r(95) ≥
0.26, p ≤ 0.01, corrected, Supplementary Fig. 2). No cortical regions
showed significant interactions between math ability and gender
(t(93) ≤ 2.63, threshold: voxel-wise p ≤ 0.01, cluster corrected to p
< 0.05, threshold= 110 voxels), indicating that the relation
between math ability and neural maturity does not depend on
gender. In other words, mathematical processing networks
develop at the same rate for girls and boys.
To visualize patterns of gender similarities, neural maturity was

extracted from an independently-defined number processing
network15 consisting of bilateral IPS, bilateral inferior frontal gyrus,
and anterior cingulate cortex (number > face, shape, and word
matching; Fig. 4a; t(17) ≥ 4.04, FDR corrected to p < 0.05). In accord
with the whole-brain analyses, these regions showed statistical
equivalence, not statistical differences, and no differences in
variance (Fig. 4b; t tests: max t(102)= 1.08, p= 0.28; equivalence-
tests: min t1(102)= 3.82, p= 0.0001; min absolute value of t2
(102)= 2.33, p= 0.01; see Supplementary Table 1 for full statistics).
Regression analyses revealed that math ability predicted neural
maturity throughout the number processing network, particularly in
the IPS, but did not interact with gender (interaction predictors: max
t(93)= 1.42, p= 0.16, Supplementary Table 1). This shows that

within key number processing regions of the brain, girls and boys
show the same degree of development in mathematical processing.

Whole-brain child-to-child similarity
Finally, we examined neural similarity in children of the same
versus different genders. Intersubject correlations were calculated
between children, resulting in maps of same-gender neural
similarity (comparing girls with girls and boys with boys) and
different-gender neural similarity (comparing girls with boys and
boys with girls). To determine whether there were differences
between same-gender versus different-gender similarity, each
child’s whole-brain different-gender similarity map was subtracted
from their same-gender similarity map. These difference maps
were then subjected to a one-sample t test vs 0. This whole-brain t
test revealed no regions that showed a difference in neural activity
(threshold: t(103) ≥ 2.62, voxel-wise p ≤ 0.01, corrected to p < 0.05
with a cluster threshold of 19 voxels). Figure 5 shows average
neural similarity calculated to children of the same gender
(yellow), a different gender (dark green), and the overlap of those
maps (light green; r(500) ≥ 0.115, p ≤ 0.01). The regions that
showed strong neural similarity between children were identical
for statistical comparisons of the same gender and different
genders. This again indicates that children’s patterns of neural
activity reflect one heterogenous group, rather than two distinct
groups based on gender.

DISCUSSION
Across multiple neural analyses, we show that girls’ and boys’
brains function similarly during mathematical processing. We saw

Fig. 1 Whole-brain analyses. a Frequentist statistical tests of gender differences and similarities (light purple) of neural maturity. Using
frequentist analyses (t tests), there are no regions showing significant gender differences at the standard threshold. b Whole-brain Bayes
Factor analysis showing substantial evidence of gender differences (orange) and gender similarities (dark purple) of neural maturity. The plot
to the right shows the percent of voxels across the brain that show substantial support for gender similarities and differences. The regions that
show evidence of gender similarities are consistent across frequentist and Bayesian approaches
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no evidence of gender differences in neural responses to
mathematics content, neural responses during educational video
viewing, or rates of neural development for mathematical
processing in early childhood, and in fact we found statistical
equivalence between boys and girls throughout the brain. Tests of
statistical equivalence and a Bayes Factor analysis show gender
similarities throughout the number processing network. Further-
more, boys’ and girls’ math abilities related to the rate of neural
mathematics development in the same brain regions, and neural
similarity was consistent across children of the same and of
different genders.
Our results are consistent with the ‘Gender Similarities

Hypothesis’, which argues that boys and girls function similarly
in most areas of cognition.10,23 In particular, gender similarities in
early childhood mathematics show, as proposed in the domain of
spatial cognition,14 that gender differences in STEM fields in adults
are not derived from intrinsic differences in children’s brains but
likely from a complex environmental origin.
Any test of cognitive ability that shows gender differences faces

the difficulty of disentangling biological factors from social ones.
For instance, 4- to 7-year-old boys show an advantage over girls in
tests of spatial skills, but parents also report more-spatial play with
their boys compared with their girls,14 suggesting a possible
sociocultural influence on gender differences in spatial cognition.
Similarly, in math and science, teachers tend to show differential
distributions of time spent encouraging students, praising
students, and explaining concepts to students, with boys receiving
more time than girls.24–27 This is important because teachers’
perceptions of children’s math ability predicts later math
achievement scores.28 Parents’ expectations about their children’s
success also correlate with children’s own self-concepts of their
abilities and their performance on math tasks.29,30 A strong
sociocultural influence on early childhood math achievement
makes it difficult to tease apart intrinsic gender differences from
sociocultural factors in older children and adults.8,9

Given the broad similarities between boys and girls, gender
differences observed in STEM performance during adolescence or
adulthood are unlikely to originate from early childhood
differences in the brain or cognition. Although gender differences
in STEM may emerge later in development or from interactions
between STEM training and sexually dimorphic behaviors (e.g.,

differences in hormone levels following puberty),6,31,32 the
findings of widespread gender similarities in boys’ and girls’
brains do not support claims of biological gender differences in
childhood. Instead, the data show that the neural functions
underlying mathematical cognition are similar between genders
and represent one heterogeneous population rather than two
categorical groups.

METHODS
Participants
In total, 104 typically-developing 3- to 10-year-old children (55 girls) and 63
adults (35 women) participated in one of three studies. Age was
statistically equivalent between girls and boys (t1(102)= 3.32, p= 0.0006,
t2(102)= 3.43, p= 0.0004), and there were no differences in age variability,
reflecting an even distribution of age across-gender groups (F(1,102)=
0.07, p= 0.79, girls’ sd= 1.65, boys’ sd= 1.63). Informed written consent
was obtained from adult participants and parents of children, and
informed written assent was obtained for children 7 years and older. All
protocols were approved by the University of Rochester Research Subjects
Review Board.

fMRI paradigms
Study 1. Twenty-six 4- to 10-year-old children (15 girls; girls’ mean age=
6.93 years, boys’ mean age= 7.13 years; range= 4.32–10.80 years) and 20
adults (13 women; women’s mean age= 20.52 years, men’s mean age=
20.98 years; range= 18.9–25.4 years) successfully participated in Study 1.
This paradigm consisted of a 20.3-min video containing clips from
children’s educational television shows. Clips ranged from 12 to 176 s in
length and were edited into a continuous movie. These data have been
previously reported15 as the “natural viewing” task.

Study 2. Thirty-five 4- to 8-year-old children (17 girls; girls’ mean age=
6.61 years, boys’ mean age= 6.35 years; range= 4.08–8.67 years) and 23
adults (12 women; women’s mean age= 22.13 years, men’s mean age=
22.65 years; range= 18.44–28.09 years) successfully participated in Study
2. The 11.6-min video contained clips from children’s educational television
shows. Clips ranged from 12.5 to 32.4 s in length and were edited into a
continuous movie. These data have been previously reported16 as the
“natural viewing” task.

Study 3. Forty-three 3- to 5-year-old children (23 girls; girls’ mean age=
4.54 years, boys’ mean age= 4.71 years; range= 3.12–5.96 years) and
20 adults (10 women; women’s mean age= 23.43 years, men’s mean age

Fig. 2 Number and math selectivity in the intraparietal sulci (IPS). Individual data for boys are shown in blue and for girls are shown in red.
Error bars represent ±1 standard error of the mean. a Percent signal change for number clips vs non-number clips in Study 1—redrawn data15

(RIPS: t(25)= 4.01, p= 0.0005, 95% CI= 0.19–0.60, Cohen’s d= 0.79; LIPS: t(25)= 1.51, p= 0.26, 95% CI=−0.09–0.33, Cohen’s d= 0.23).
b Preference for math clips vs non-math clips in Study 2—redrawn data16 (RIPS: t(34)= 6.86, p < 0.0001, 95% CI= 0.12–0.23, Cohen’s d= 1.16;
LIPS: t(34)= 4.12, p= 0.0002, 95% CI= 0.05–0.15, Cohen’s d= 0.70). c Slope of % signal change across increasing counting vs alphabet
sequences in Study 3 (higher slope= greater sensitivity to sequence; RIPS: t(42)= 3.21, p= 0.003, 95% CI= 0.35–1.56, Cohen’s d= 0.49; LIPS: t
(42)= 2.55, p= 0.014, 95% CI= 0.14–1.17, Cohen’s d= 0.39). Independent t tests suggest no differences between girls and boys (max t value
= 0.84, min p value= 0.41) and Bayes Factor analyses suggest anecdotal to substantial evidence for gender similarities (BF10 for gender
differences: 0.30–0.47; BF01 for gender similarities: 2.14–3.25). Although, samples for each individual study are small, effects are consistent with
the larger patterns reported in the following analyses
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= 24.17 years; range= 20.15–31.55 years) successfully participated in
Study 3. In this study, participants listened to pre-recorded audio tracks of
someone counting or saying the alphabet. Short clips from child-friendly
cartoons were presented on the screen during the sequences. Audio tracks
were removed from the cartoons and were replaced with quieter, child-
friendly instrumental music. Cartoon tracks were matched across
sequences. Sequences were presented in 70 s blocks of 60 items presented
at a rate of one item every 1.1–1.2 s. Fifteen blocks were presented
throughout the experimental paradigm and were separated by 4-s of
blackscreen. The scan began and ended with 12 s of blackscreen resulting
in a total scan time of 19.2 min.

Number Localizer. Eighteen children from Study 1 (11 girls, 7 boys; girls’
mean age= 6.78 years, boys’ mean age= 7.47 years; range= 4.32–10.8
years) completed a traditional fMRI paradigm in which they compared
pairs of stimuli (isolated images of faces, numbers, words or shapes) that
were presented on the left and right sides of the screen. Participants
reported whether they were the same or different by pressing a button
only if the two stimuli matched. Half of the pairs presented were
“matches”, whereas the other half were “non-matches”. Number compar-
isons were made across notation (i.e., dot array compared with Arabic
numeral), face comparisons were made across a frontal shot and an
oblique view, word comparisons were made across a word in all capital
letters and the other in all lowercase letters, and shape comparisons were
made across two shape images. Stimuli were presented in a blocked
design. Each block consisted of three 2-s trials from the same condition,
separated by a 2-s intertrial interval. Three blocks of each condition were
semi-randomly presented throughout a run with 8 s of fixation between
blocks. These data have been previously reported15 as the “traditional
functional task”.

fMRI session
Prior to the scanning sessions, children participated in a 30-minute training
session in a mock scanner to familiarize them with the scanning
environment and to practice remaining motionless. Children who
completed the Number Localizer paradigm practiced the task prior to
the MRI session. Adults received verbal instructions prior to scanning and
did not participate in a training session. During the scan, children’s heads

were secured with medical tape, headphones, and foam padding, and
adults’ heads were secured with headphones and foam padding.

MR parameters
Whole-brain BOLD imaging was conducted on a 3-Tesla Siemens
MAGNETOM Trio scanner with a 12-channel head coil at the Rochester
Center for Brain Imaging. High-resolution structural T1 contrast images
were acquired using a magnetization prepared rapid gradient echo pulse
sequence at the start of each session (repetition time (TR)= 2530ms, echo
time (TE)= 3.44 ms, flip angle= 7, field of view (FOV)= 256mm, matrix=
256 × 256, 192, 176, or 160 slices depending on head size, 1 × 1 × 1mm
sagittal left-to-right slices). An echo-planar imaging pulse sequence with
online motion correction was used for T2*contrast (TR= 2000 ms, TE=
30ms, flip angle= 90 degrees, FOV= 256mm, matrix 64 × 64, 30 axial
oblique slices, parallel to the AC-PC plane, voxel size= 4 × 4 × 4mm). The
primary paradigms from Studies 1, 2, and 3 were 610 volumes, 348
volumes, and 567 volumes, respectively, and the Number Localizer
paradigm was distributed over two to four functional runs of 132
volumes each.

Preprocessing
fMRI data were analyzed in BrainVoyager33 using in-house scripts drawing
on the BVQX toolbox. Data from previously published studies were
analyzed as originally reported for consistency.15,16 For the Number
Localizer and Study 1, which were collected during the same scanning
session, the first six TRs of each run were discarded prior to analysis to

Fig. 4 Region-of-interest analyses. a Number processing network
identified from an independent localizer (number matching > face,
shape, & word matching). b Mean neural maturity in the number
network (top) and relation between neural maturity and math ability
in the number network (bottom). Boxplot center line identifies the
median, the upper whiskers extend from the 75th percentile to the
75th percentile + 1.5 interquartile range, the lower whiskers extend
from the 25th percentile to the 25th–1.5 interquartile range. Outliers
are those data points beyond the whisker ranges. Shaded regions
around the lines in the scatterplots indicate ±1 standard error.
Abbreviations: IPS= intraparietal sulcus, ACC= anterior cingulate
cortex, IFG= inferior frontal gyrus, R= right, L= left

Fig. 3 Gender similarities in math ability. a Left: distributions of
TEMA-3 scores for girls (red) and boys (blue). Right: TEMA-3 scores
increase with age for girls (red) and boys (blue), shaded regions
around the line represent ±1 standard error of the mean. b Regions
where boys and girls showed a relation between neural maturity
and math ability. Importantly, no cortical regions showed an
interaction between math ability and gender. Abbreviations: IPS=
intraparietal sulcus, PFC= prefrontal cortex, MTG=middle temporal
gyrus, R= right, L= left
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allow for signal equilibration. For Studies 2 and 3, the first two TRs of each
run were discarded. Functional data were registered to high-resolution
anatomy images for each participant in native space. Preprocessing
consisted of slice scan time corrected (cubic spline interpolation), motion
correction with respect to the first volume in the run, and linear trend
removal in the temporal domain (cutoff: two cycles within the run). A
Gaussian spatial filter with an 8mm full-width at half-maximum was
applied to each volume for Study 1,15 and a 6mm full-width at half-
maximum was applied to each volume for Studies 216 and 3. The
functional data from the Number Localizer were not smoothed. Adult and
child echo-planar and anatomical volumes were then normalized into
Talairach space34 using piecewise affine transformation based on manual
identification of anatomical landmarks. Analyses were performed on
processed data in Talairach space. Average framewise displacement35,36

was regressed across the brain for each child to control for sudden
changes in volume-to-volume head motion.

fMRI data analyses
Neural maturity: neural data were analyzed using an intersubject
correlation approach.15–17 Between-group intersubject correlations were
performed by using the full timecourse of each voxel for each child as a
predictor for activation of the corresponding voxel in each adult brain.
Functional data from each child were then correlated with that of each
adult from the same study to produce paired r-maps. Paired r-maps
represent the neural similarity of each child compared with each adult in
every voxel of the brain. A single, average brain map was then calculated
to represent the neural similarity of each child to all adults. This map is
referred to as a map of “neural maturity” because it shows how “adult-like”
each child’s neural timecourse appears. To ensure that these similarity
maps were not confounded by any adult gender differences prior to
averaging, we compared neural maturity calculated to women vs men. For
each child, we conducted an Independent Samples t-test to compare
neural maturity when calculated to adults of the same vs different gender
as the child. This resulted in a map of between-group t values for each
child. To determine whether there were any differences that were
consistent at the group level, the absolute value of these individual-level
between-group t value maps were then subjected to a one-sample t test vs
a critical t value of 2.08. The critical value represents the t value at which a
difference could be considered significant given the smallest sample of
adults (n= 20 for studies 1 and 3; t(18)= 2.08, p= 0.05). If there were a
significant difference between neural maturity calculated to adults of the
same vs different gender as the child, the one-sample t test should reveal a
positive and significant effect, which would indicate that the absolute
values of the individual-level between-group t values are significantly
above 2.08. Instead, the whole-brain one-sample t test revealed that at the
group level, the absolute values of the individual-level between-group t
values were significantly below the critical t value of 2.08 (one-sample t
test of absolute value of individual-level between-group t values vs critical
t value of 2.08: t(102) ≤−2.62, p ≤ 0.01). In other words, the majority of
individual-level between-group t values were less than the critical t value
of 2.08 (range of average absolute value of individual-level between-group
t values across voxels: 0–1.90). This indicates that overall, the differences

between neural maturity when calculated to adults of the same vs
different gender were not different, so neural maturity was not biased by
the gender of the adult.

Neural similarity. To compare how similar children were to each other,
intersubject correlations were calculated across children following the
same procedures as for calculating neural maturity. This resulted in two
maps for each child: one representing the average neural similarity of a
child to children of the same gender and one representing the average
neural similarity of a child to children of the different gender. To compare
neural similarity within and across gender, these maps were then
subtracted from each other (within-gender similarity−across-gender
similarity) and these difference maps were subjected to a one-sample t
test vs 0.

Number Localizer. Functional data collected during the traditional fMRI
paradigm were analyzed using a general linear model (random effects
analysis). Experimental events (duration= 10 s) were convolved with a
standard dual gamma hemodynamic response function. There were four
regressors of interest (corresponding to the four stimulus categories), one
regressor for button press, and six regressors of no interest (corresponding
to the motion parameters obtained during preprocessing).

Region-of-interest (ROI) analyses. Data were extracted from number
network ROIs using MATLAB. Analyses were then conducted using R
(version 3.3.1) and R-Studio (version 0.99.902). Independent samples t tests
were conducted using the “t test” function assuming equal variance. Tests
of equivalence were conducted using the “TOSTtwo.raw” function from the
“TOSTER” package (upper and lower bounds set to ±0.667 × standard
deviation of the entire group; alpha= 0.05). This function returns two t
values (t1 and t2). For statistical equivalence, both t values must be
statistically significant. Statistical equivalence is rejected if either t1 or t2
does not reach significance. Levene’s Test of Variance was carried out
using the “leveneTest” function in the “car” package. Regression analyses
were conducted using the built-in “lm” function.

Assessment of math ability
Math skills were evaluated by administering the TEMA-322 to participants
aged 8 and younger. The TEMA-3 tests a variety of math concepts and is
standardized for 3–8-year-old children.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
These data sets are available from the corresponding author on reasonable request.

Fig. 5 Child-to-child neural saimilarity. Average neural similarity (r(500) ≥ 0.115, p ≤ 0.01) when calculated across children of the same gender
(yellow, column 1) and children of different genders (green, column 2). The third column shows the overlap of the first two columns in light
green. Importantly, regions are identical across neural similarity calculated to children of the same gender and to children of different genders
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CODE AVAILABILITY
All code for R and MATLAB are available from the corresponding author on
reasonable request.
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