Gifted Education in the United States:
 Laws, Access, Equity, and Missingness Across the Country by Locale, Titte I School Status, and Race

 Marcia Gentry, Anne Gray, Gilman W. Whiting, Yukiko Maeda, and Nielsen Pereira SYSTEM FAILURE
systemictinnctir bequred

SYSTEM FAILURE: ACCESS DENIED

SYSTEM FAILURE: ACCESS DENIED

URGENT! SYSTEMIC CHANGE REQUIRED

Gifted Education in the United States:
Laws, Access, Equity, and Missingness Across the Country by Locale, Title I School Status, and Race

Marcia Gentry and Anne M. Gray Purdue University

Gilman W. Whiting
Vanderbilt University
Yukiko Maeda and Nielsen Pereira
Purdue University

Copyright ©2019, Authors.
Edited by Lacy Compton
Cover design by Juliana Tay and layout design by Marjorie Parker
ISBN-13: 978-0-578-62080-0

No part of this report may be reproduced, translated, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the authors.

Printed in the United States of America.

Marcia Gentry, corresponding author
100 North University Street
Purdue University
mgentry@purdue.edu
www.purdue.edu/geri

ACKNOWLEDGEMENTS

This research was supported by a grant from the Jack Kent Cooke Foundation to better assess the extent of under representation of students with financial need, including those from rural regions, in gifted programs. The views expressed in this report are those of the authors and do not necessarily reflect the opinions of the Foundation.

This research was also supported by two grants from the Purdue Research Foundation to evaluate the access to programs for students with gifts and talents across the nation, by race, school Title I status, and by school locale. The views expressed in this report are those of the authors and do not necessarily reflect the opinions of the Foundation.

We would like to thank Lacy Compton and Marjorie Parker for their assistance in editing and formatting this report. Special thank you to Juliana Tay for her work in conceptualizing the cover design and to Aakash Chowkase for his work on figures.

AUTHORS

Marcia Gentry, Department of Educational Studies, Purdue University; Anne M. Gray, Department of Educational Studies, Purdue University; Gilman W. Whiting, African American and Diaspora Studies, Vanderbilt University; Yukiko Maeda, Department of Educational Studies, Purdue University; Nielsen Pereira, Department of Educational Studies, Purdue University.

Correspondence concerning this article should be addressed to Marcia Gentry, Department of Educational Studies, Purdue University, Beering Hall Room 3162, 100 North University Street, West Lafayette, IN 47907-2098, USA.

Email: mgentry@purdue.edu

FOREWORD

With the support of the Jack Kent Cooke Foundation and Purdue Research Foundation, this report has been an important journey with critical findings. In it we highlight the past and current inequities in the field concerning race, income, and locale. As shown by the data in this report, gifted education has much work to do to shed the seemingly accurate perceptions of classism, racism, and the resulting elitism that have plagued our field for so many years. Our intention is that this work will set a baseline from which to improve. We intend for this report to draw attention needed to make substantial changes to how children with gifts and talents are identified, developed, and served. As a country we can ill-afford to ignore the potential talents of the children in our schools. With as many students missing from gifted identification as are actually identified, we are in crisis concerning lost talent potential. The facts that contribute to missingness are shocking:

- 42% of schools in 2015-2016 did not identify a single student with gifts and talents;
- Students who attend Title I schools are identified a rate of only 58% of their counterparts in Non-Title I schools; and
- American Indian/Alaska Native, Black, Latinx, and Native Hawaiian students are less likely than their Asian and White counterparts to be identified with gifts and talents with representation indices of $0.83,0.57,0.67$, and 0.62 , respectively.

We must strive to create access to talent development programs for all students; identify and serve students equitably; and ensure that all of the United States' talented youth are nurtured and valued regardless of the color of their skin, their family income, or the location of their home.

We hope this report inspires educators and policy makers across the country to engage in this difficult and important work. The time for change is now.

TABLE OF CONTENTS

Executive Summary 1
Gifted Education in the United States:
Laws, Access, Equity, and Missingness Across the Countryby Locale, Title I School Status, and Race 7
Background Literature 11
Report Card Methods 21
Report Cards 29
Synthesis of State Report Cards and Data Across the
Nation, 50 States, and the District of Columbia 83
References 137
About The Authors 143
Appendices 145

List of Tables

TABLE 1 Percentage of Schools With Identification and Percentage of Students Identified in 2015-2016 2
TABLE 2 Breakdown of State Mandates for Gifted Education, Identification, Services, and Funding 84
TABLE 3 Number and Percentage of Students Identified With Giftedness Overall and by Title I Status, With Difference Between Non-Title I and Title I Schools, National. 89
TABLE 4 Ratio of Non-Title I and Title I Schools With/Without Gifted Access With Grand Ratio of Title I Ratio to Non-Title I Ratio in the Nation. 91
TABLE 5 2015-2016 National Access to Identification as Gifted in All Schools by Locale With a Ratio of Locale to All. 93
TABLE 6 2015-2016 Access to Identification as Gifted by State by Locale, With Ratios for Locales in Which Access is Limited 94
TABLE 7 2015-2016 National Access to Identification as Gifted in All Schools and by Race With a Ratio of Race to All. 95
TABLE 8 Student Access to Identification, Ratio of Race Access to All Access by State in 2015-2016 97
TABLE 9 Locale Rls Overall and by Title I Status Across the Nation and States in 2015-2016 100

List of Figures

FIGURE 1. Count of State Mandates for Gifted Education, Identification, Services, and Level of Funding in 2015-2016 2
FIGURE 2. 2015-2016 State Grade and Status by Access of Opportunity to Be Identified With Range of Percent of Students in Schools With Identification and Range of Percent of Students Identified 87
FIGURE 3. Variations Among Percentage of Identified Students in States in 2015-2016 88
FIGURE 4. 2015-2016 State Grade and Status by Ratio of Title I to Non-Title I Rates of Identification 90
FIGURE 5. 2015-2016 States Sorted by Range of Grand Ratio of Title I Ratio to Non-Title I Ratios 92
F/GURE 6. National Representation Indices by Locale and Race 2015-2016 103
F/GURE 7, National Representation Indices by Locale and Race 2013-2014 103
F/GURE 8. National Representation Indices by Locale and Race 2011-2012 104
FIGURE 9, AIAN Youth Representation Indices (RIs) in All, Non-Title I, and Title I Schools by State in 2015-2016 106
FIGURE 10, Asian Youth Representation Indices (RIs) in All, Non-Title I, and Title I Schools by State in 2015-2016 107
FIGURE 11., Black Youth Representation Indices (RIs) in All, Non-Title I, and Title I Schools by State in 2015-2016 108
FIGURE 12. Latinx Youth Representation Indices (RIs) in All, Non-Title I, and Title I Schools by State in 2015-2016 109
FIGURE 13. NHPI Youth Representation Indices (RIs) in All, Non-Title I, and Title I Schools by State in 2015-2016 110
F/GURE 14. TMR Youth Representation Indices (RIs) in All, Non-Title I, and Title I Schools by State in 2015-2016 111
FIGURE 15. White Youth Representation Indices (RIs) in All, Non-Title I, and Title I Schools by State in 2015-2016 112
FIGURE 16. AIAN Youth Missing From Gifted Education Identification by State, Lower to Upper Boundary Estimates in 2015-2016 115
F/GURE 17, Asian Youth Missing From Gifted Education Identification by State, Lower to Upper Boundary Estimates in 2015-2016 115
FIGURE 18, Black Youth Missing From Gifted Education Identification by State, Lower to Upper Boundary Estimates in 2015-2016 116
FIGURE 19. Latinx Youth Missing From Gifted Education Identification by State, Lower to Upper Boundary Estimates in 2015-2016 116
FIGURE 20, NHPI Youth Missing From Gifted Education Identification by State, Lower to Upper Boundary Estimates in 2015-2016 117
FIGURE 21. TMR Youth Missing From Gifted Education Identification by State, Lower to Upper Boundary Estimates in 2015-2016 117
FIGURE 22. White Youth Missing From Gifted Education Identification by State, Lower to Upper Boundary Estimates in 2015-2016 118
FIGURE 23. Access Ratios and Representation Indices for AIAN Youth by State in 2015-2016 119
F/GURE 24. Access Ratios and Representation Indices for Asian Youth by State in 2015-2016 120
F/GURE 25. Access Ratios and Representation Indices for Black Youth by State in 2015-2016 121
FIGURE 26. Access Ratios and Representation Indices for Latinx Youth by State in 2015-2016. 122
FIGURE 27, Access Ratios and Representation Indices for NHPI Youth by State in 2015-2016 123
FIGURE 28. Access Ratios and Representation Indices for TMR Youth by State in 2015-2016 124
FIGURE 29. Access Ratios and Representation Indices for White Youth by State in 2015-2016 125

List of Appendices

APPENDIX A Students Who Have Access to Identification as Gifted and Schools That Identify Students by State, 2015-2016 146
APPENDIX B Access to Gifted Identification by State for 2000, 2011-2012, 2013-2014, and 2015-2016 148
TABLE C1 Schools With or Without Gifted Identification by Non-Title I and Title I Status Nationally for 2000, 2011-2012, 2013-2014, and 2015-2016 149
TABLE C2 Schools With or Without Gifted Identification by Non-Title I and Title I Status by State, 2015-2016 149
APPEN DIX D Percent of Schools With No Reported Title I Status Nationally, by State, and DC, for 2011-2012, 2013-2014, and 2015-2016 152
APPENDIX E Number and Percentage of Students Identified With Giftedness Overall and by Title I Status, With Difference Between Non-Title I and Title I Schools by State, 2015-2016 153
APPENDIX F
TABLE F1 2015-2016 Access to Identification as Gifted for All and American Indian/Alaska Native Students With Ratio Between These. 154
TABLE F2 2015-2016 Access to Identification as Gifted for All and Asian Students With Ratio Between These 155
TABLE F3 2015-2016 Access to Identification as Gifted for All and Black Students With Ratio Between These 156
TABLE F4 2015-2016 Access to Identification as Gifted for All and Latinx Students With Ratio Between These 157
TABLE F5 2015-2016 Access to Identification as Gifted for All and Native Hawaiian/Pacific Islander Students With Ratio Between These 158
TABLE F6 2015-2016 Access to Identification as Gifted for All and Two or More Races Students With Ratio Between These 159
TABLE F7 2015-2016 Access to Identification as Gifted for All and White Students With Ratio Between These 160
APPENDIX G 2015-2016 Access to Identification as Gifted in all Schools by State by Locale with Percentages, and Ratios 162
APPENDIX H
FIGURE H1. National Trends in Representation as Gifted for AIAN Students by Title I Status 163
FIGURE H2. National Trends in Representation as Gifted for Asian Students by Title I Status 163
FIGURE H3. National Trends in Representation as Gifted for Black Students by Title I Status 164
FIGURE H4. National Trends in Representation as Gifted for Latinx Students by Title I Status 164
FIGURE H5. National Trends in Representation as Gifted for Native Hawaiian/ Pacific Islander Students by Title I Status 165
FIGURE H6. National Trends in Representation as Gifted for Students with Two or More Races by Title I Status 165
FIGURE H7, National Trends in Representation as Gifted for White Students by Title I Status 166
APPENDIXI
TABLE I1 2015-2016 American Indian/Alaska Native Representation Indices in All, Non-Title I, and Title I Schools by Locale for Nation and States 168
TABLE I2 2015-2016 Asian Representation Indices in All, Non-Title I, and Title I Schools by Locale for Nation and States. 169
TABLE I3 2015-2016 Black Representation Indices in All, Non-Title I, and Title I Schools by Locale for Nation and States. 170
TAB LE I4 2015-2016 Latinx Representation Indices in All, Non-Title I, and Title I Schools by Locale for Nation and States. 171
TAB LE I5 2015-2016 Native Hawaiian/Pacific Islander Representation Indices in All, Non-Title I, and Title I Schools by Locale for Nation and States 172
TAB LE I6 2015-2016 Two or More Races Representation Indices in All, Non-Title I, and Title I Schools by Locale for Nation and States 173
TABLE I7 2015-2016 White Representation Indices in All, Non-Title I, and Title I Schools by Locale for Nation and States. 174
TABLE I8 2015-2016 American Indian/Alaska Native Student Enrollment Nationally and by State for Title I Status and Locale With Cumulative Percentage and Ordered by Percent Enrolled in States 175
TAB LE I9 2015-2016 Asian Student Enrollment Nationally and by State for Title I Status and Locale With Cumulative Percentage and Ordered by Percent Enrolled in States 176
TAB LE I10 2015-2016 Black Student Enrollment Nationally and by State for Title I Status and Locale With Cumulative Percentage and Ordered by Percent Enrolled in States 177
TAB LE I11 2015-2016 Latinx Student Enrollment Nationally and by State for Title I Status and Locale With Cumulative Percentage and Ordered by Percent Enrolled in States 178
TABLE I12 2015-2016 Native Hawaiian/Pacific Islander Student Enrollment Nationally and by State for Title I Status and Locale With Cumulative Percentage and Ordered by Percent Enrolled in States 179
TAB LE I13 2015-2016 Two or More Races Student Enrollment Nationally and by State for Title I Status and Locale With Cumulative Percentage and Ordered by Percent Enrolled in States 180
TABLE I14 2015-2016 White Student Enrollment Nationally and by State for Title I Status and Locale With Cumulative Percentage and Ordered by Percent Enrolled in States 181
APPENDIXJ
TABLE J1 Estimated Students Missing and Percent Missing in Schools That Do Not Identify Gifted Students 182
TABLE J2 $2015-2016$ Students Nationally and by State, Identified With Gifts and Talents, Rate of Identification, Missing by Lower and Upper Boundary Estimates, and Percent Missing by Lower and Upper Boundary Estimates 182
TABLE J3 2015-2016 American Indian and Alaska Native Students, Nationally and by State, Identified With Gifts and Talents and Missing by Lower and Upper Boundary Estimates and Percent Missing Estimates at Upper and Lower Boundaries. 184
TABLE J4 2015-2016 Asian Students, Nationally and by State, Identified With Gifts and Talents and Missing by Lower and Upper Boundary Estimates and Percent Missing Estimates at Upper and Lower Boundaries 185
TABLE J5 2015-2016 Black Students, Nationally and by State, Identified With Gifts and Talents and Missing by Lower and Upper Boundary Estimates and Percent Missing Estimates at Upper and Lower Boundaries 186
TABLE J6 2015-2016 Latinx Students, Nationally and by State, Identified With Gifts and Talents and Missing by Lower and Upper Boundary Estimates and Percent Missing Estimates at Upper and Lower Boundaries 187
TABLE J7 2015-2016 Native Hawiian/Pacific Islander Students, Nationally and by State, Identified With Gifts and Talents and Missing by Lower and Upper Boundary Estimates and Percent Missing Estimates at Upper and Lower Boundaries. 188
TABLE J8 2015-2016 Two or More Races Students, Nationally and by State, Identified With Gifts and Talents and Missing by Lower and Upper Boundary Estimates and Percent Missing Estimates at Upper and Lower Boundaries 189
TABLE J9 2015-2016 White Students, Nationally and by State, Identified With Gifts and Talents and Missing by Lower and Upper Boundary Estimates and Percent Missing Estimates at Upper and Lower Boundaries 190

EXECUTIVE SUMMARY

This project investigated laws, access, equity, and missingness related to gifted education identification as reported biennially to the federal government Office of Civil Rights by all public schools in 2000, 2011-2012, 2013-14, and 2015-16. Specifically, we examined these areas nationally, and by state across schools for Non-Title I and Title I schools, by Locale (i.e., City, Suburb, Town, Rural), and by Race (i.e., American Indian/Alaska Native American [AIAN]; Asian; African American/Black [Black]; Hispanic/Latino [Latinx]; Native Hawaiian/Pacific Islander [NHPI]; Two or More Races [TMR]; and White). Report cards were developed for each state and findings were synthesized. Representation indices were used to investigate equity. These analyses were compared to previous similar analyses.

Laws

Most states have laws concerning gifted education ($N=38$); however laws vary widely with some only having language requiring identification ($N=7$) but not services, and some requiring identification and services ($N=30$). Of those 30 states, 6 have no funding and 4 are fully funded. Of the remaining 13 states with no laws, 11 have language, with 4 of those having partial funding. Only 2 states have no language, mandate, or funding. The top 25 states in terms of access to identification have mandates. Although access does not necessarily translate to equity, it is essential for equity. Additionally, access results in lower numbers of missing students. Those states with fully funded mandates for identification and services (FL, GA, IA, OK) lead in access to gifted education services, with Florida and Oklahoma showing promise in areas of equity. (See Figure 1.)

Access

Access is defined as attending a school that identifies youth with gifts and talents. Nationally, in 2015-2016 67.38\% of students had such access and these students attended 55.58% of schools in the country. This is a decrease from 2000 of 6% and 4%, respectively.

FIGURE 1. Count of State Mandates for Gifted Education, Identification, Services, and Level of Funding in 2015-2016

TABLE 1

Percentage of Schools With Identification and Percentage of Students Identified in 2015-2016
$\left.\begin{array}{c|ccc|}\hline \text { Access = Attending a school that }\end{array} \quad \begin{array}{c}\text { Percentage of Schools } \\ \text { That Identify Students }\end{array} \begin{array}{c}\text { Percentage of } \\ \text { Students Identified }\end{array}\right\}$

In general, more Title I schools than Non-Title I schools identify students with gifts and talents (Table 1), so access in Title I schools is not a cause of underrepresentation or of students missing from gifted education identification nationally. However, nationally and in most states ($N=42$; these data are not available for DC, MA, RI \& VT), fewer students are identified in Title I than in Non-Title I schools. Nationally in 2015-2016, 9.57\% of students who attend schools that identify youth with gifts and talents were identified. However, 13.46% of students in Non-Title I schools were identified; whereas only 7.86% of students in Title I schools were identified. Thus, nationally, students who attend Title I schools are identified at 0.58 the rate of those who attend, wealthier, Non-Title I schools.

Access does not guarantee equity. Nationally, all racial groups, except for AIAN youth (with access at 0.92 that of the general population) have equal access to identification. Although across the states, Black, Latinx, and NHPI have equal access, they remain underrepresented in gifted programs. AIAN youth have unequal access in several states (AK, AZ, MT, SD, WY) with large proportions of these youth, which exacerbates their missingness from gifted education identification.

Nationally, little differences exist across City, Suburb, Town, and Rural locales in access to identification. However, when examined by state, only eight states (FL, IA, ME, NC, OK, SC, TX, VA) have equal access across these locales. Unequal access exists for City and Town locales
in 17 states, for Suburb locales in 5 states, and for Rural locales in 25 states. So , in half of the country, rural youth have less access to identification than do students who attend schools in other locales.

Equity

Equity in gifted identification was examined using representation indices (RI), which are simply the percentage of a group identified as gifted divided by its percentage in the general population. Equity is defined as having an RI of at least 0.80 . A RI of 1.00 indicates perfect proportional representation. We refer to RIs greater than 1.00 as "well-represented" rather than "over-represented."

$$
\text { Representation Indices }=\frac{\text { Percent of a group that is identified with gifts and talents }}{\text { Percent of that group in the general population }}
$$

Equity is a longstanding, persistent, and continuing problem for students who are AIAN, Black, Latinx, or NHPI nationally, and across all states and in all Locales. Fewer than 5\% of students in the District of Columbia, Massachusetts, Rhode Island, and Vermont had access to identification, thus these states were omitted from analyses on equity.

Although fewer students are identified in general in Title I schools as stated above, students in all racial groups-except for Black youth-are more equitably identified (albeit still underidentified in most cases) in Title I than in Non-Title I schools.
Racial equity is so bad across the states, here we report the only equitable Rls by underrepresented group.

- For AIAN youth, Rls greater than 0.95 exist in Delaware, Alabama, North Dakota, Wyoming, Oklahoma, Hawaii (overall); Wyoming, New York, Connecticut, Delaware, Oklahoma (Non-Title I); and Delaware, Alabama, North Dakota, Hawaii, Oklahoma (Title I). RIs from 0.80 to 0.949 exist in Georgia, New York (overall); Alabama, Arizona, Georgia, West Virginia (Non-Title I); and Virginia, Georgia, Tennessee, Florida (Title I).
- For Black youth, Rls greater than 0.95 exist in no states (overall); Illinois, Michigan (NonTitle I); and Utah, Wyoming, New York, Michigan (Title I). RIs from 0.80 to 0.949 exist in New York, Michigan, Utah, Arkansas (overall); no states (Non-Title I); and Arkansas, Maryland (Title I).
- For Latinx youth, Rls greater than 0.95 exist in no states (overall); no states (Non-Title I); and Utah (Title I). RIs from 0.80 to 0.949 exist in Florida, Texas (overall); Louisiana, Maryland (Non-Title I); and in Florida, Colorado, Texas, California, Nevada (Title I).
- For NHPI youth from the 20 states where they have sizeable populations, Rls greater than 0.95 exist in New Jersey, New York, Illinois, Virginia (overall); Illinois, New York, New Jersey, Utah (Non-Title I); and Virginia, New Jersey, Utah, Nevada, Georgia, Colorado (Title I). Rls from 0.80 to 0.949 exist in Utah, Georgia, California, Nevada (overall); Virginia, Georgia (Non-Title I); and in California, New York (Title I).

With regard to Locale, representation indices were used to investigate proportional equity overall and across Title I status. Although National equity across locales exceeded 0.80 except for Non-Title I Town schools, analyses by state revealed that Town and Rural schools have less equity in identification than do City and Suburb schools. Specifically, with 141 RIs for each locale among 47 states, 21 states had 34 Rls less than 0.80 for Rural locales and 31 states had 58 failing RIs for Town locales. Only 3 states, Arkansas, Mississippi, and New Hampshire, had equitable Rls across all locales and school types.

A breakdown by race, Title I status, and Locale further reveals the inequity across the country for underserved groups and for students who attend schools in Town or Rural locales.

Missingness

An area not found in previous reports that demonstrates gifted identification trends is missingness. We define missingness as students who could/should have been identified, based on the percentages identified in each state on average (lower boundary) and at the higher rate of identification in Non-Title I schools (upper boundary). Missing students come from two sources: Schools in which students have no access to identification (schools that do not identify students) and schools in which some groups of students are underidentified.
Nationally, in 2015-2016, 3,255,232 students were identified with gifts and talents, but between 2,092,850 and 3,635,533 were missing either because they attended a school that did not identify any children, or because they were a member of a group underidentified in schools that do identify students. This represents from 39% to 52% of students missing from gifted identification.

When broken down by race, these missing students come largely from underrepresented groups with the following ranges of percentages of each race missing from gifted education identification. For example, 63% to 74% of Black youth are missing from gifted identification.

- AIAN, 48% to 63%
- Asian, 20\% to 26%
- Black, 63% to 74%
- Latinx, 53% to 66%
- NHPI, 59\% to 72\%
- TMR, 29\% to 49\%
- White, 29\% to 42\%

These data are described and provided in the full report and in the report cards for each state.

Bottom Line

The field of gifted education has much work to do to mitigate lack of opportunity and inequity within the field if all talents in the United States are to be developed. Multiple things affect whether a child is identified with gifts and talents. First is access: The child must attend a school that actually identifies students, and currently, more than one-third of children in the U.S. do not attend such schools. Second is attending a wealthier school: Children who attend Title I schools are identified at only 58% the rate of those who attend Non-Title I schools. Third is race: Children who are Asian or White are 2 to more than 10 times more likely to be identified with gifts and talents than students who are AIAN, Black, Latinx, or NHPI. Finally, are other variables including, but not limited to:

1. using tests for identification that yield disparate results or were not normed on the populations to which they are being applied, and applying national normative cut-off scores as the most important (or only) pathway to identification;
2. requiring multiple measures rather than using multiple pathways for identification;
3. failing to account for and mitigate differences in opportunity to learn;
4. requiring teacher referral as the first step to identification;
5. failing to diversify the teaching force and to employ/graduate culturally competent teachers; and
6. continuing to allow gifted education to be used as a tool of economic and/or racial segregation.

Through awareness of the problem, educators (and legislators) can act to:

1. ensure that all schools identify students with gifts and talents;
2. examine and improve rates of programming and identification in Title I schools; and
3. put into place equitable identification procedures and programming designed to develop and reveal talents among all children, and especially those that have been underserved for generations.

For More Information

This report as well as each state report card with narrative of methods and findings can be downloaded at www.purdue.edu/geri and click Access Denied. Also this link will take visitors to an interactive website where they can find visual summaries of the data contained in the full report.

GIFTED EDUCATION IN THE UNITED STATES: LAWS, ACCESS, EQUITY, AND MISSINGNESS ACROSS THE COUNTRY BY LOCALE, TITLE I SCHOOL STATUS, AND RACE

Much has been written about underrepresentation by income and race in gifted education during the past 40 years. Additional literature exists concerning gifted students in locales including city, suburban, town, and rural school settings. Sadly, little has changed. This report seeks to refine what is known about underrepresentation in gifted education by conducting more detailed analyses than have previously been done. Because of inequity in identification and services, many scholars and practitioners outside the field of gifted education raise concerns about racism, classism, and elitism within the field. Other scholars in the field of gifted education work to understand and solve inequity, and some continue to defend inequity as it exists.

Past work, including our own, has looked at the Office of Civil Rights (OCR) data, which is the only data set that collects giftedness by race, and reported on proportionality nationally and by state. Basically, scholars have calculated the percentage of gifted students nationally and applied that percentage to different races to show underrepresentation, which persists and remains constant.

In this report, we show that underrepresentation is even worse than has previously been reported, and in doing so establish new baselines from which to work. And we highlight the urgency of this crisis as time is up and systemic change must be a top priority to mitigate the vast and pervasive underrepresentation in gifted education of children who are Black, Latinx, and Native, children who live in poverty, and children who live in small town and rural locales. The field of gifted education has hidden behind test scores that yield disparate racial and economic results, as well as teachers as gatekeepers, for far too long in its practices to identify youth with gifts and talents. This must change, and it must change now for the field to move forward as a socially just field that is responsive to the talent development needs of children from all racial and economic groups. To do less would continue to perpetuate the
racism, classism, and elitism that currently plagues the field and prevent progress and growth in today's diverse educational institutions.

Areas of Research Focus

To understand where we have been and where we are with regard to racial and economic equity in gifted education identification, we use the OCR data from 2000 as a baseline. These data are from the first recent census in which data from [most] schools nationally were reported. This is followed by three census data sets from 2012, 2014, and 2016.

Rather than simply looking at racial numbers in gifted education nationally and by state, specifically we examine access, equity, and missingness in this report. We calculate:

1. The number and percentage of student by race in schools that actually identify students as gifted, nationally and by state. This is important because more than one-third of schools nationally did not identify any gifted students in each of these years (2000, 2012, 2014, and 2016).
2. The number and percentage of students in schools that actually identify students as gifted in Non-Title I and Title I schools, nationally and by state. This is important because Title I status is a measure of poverty concentration in a school, which is a more accurate [better] predictor of student academic failure then the poverty level of their families (Vanderhaar, Muñoz, \& Rodosky, 2006). Additionally, it allows us to compare identification rates between these two types of schools and among races in each type of school.
3. The percentage of students missing as gifted who attend schools that do not identify (or serve) students with gifts and talents and the percentage of those who are underidentified in schools that identify youth with gifts and talents. This is important because past reports have underreported the numbers of students with gifts and talents by including schools that do not identify in the total, resulting in a smaller percentage of gifted students reported nationally and by state.
a. The lower boundary estimate was derived from the average percentage of students identified in schools that identify students with gifts and talents. We use this percentage and multiply it by the number of students from each race who attend schools that do not identify students with gifts and talents. This provides the number of students missing due to lack of access to identification because they attend schools that do not identify. Next, we calculate the number of students missing from schools that identify from each race using the average percent multiplied by the number of students in that race. We subtract the actual
number of students identified in that race from this number-the differences are the missing students from each race. This provides the number of students missing due to underidentification within schools that identify students with gifts and talents. Last, we subtotal the missing from each race from schools that do not and do identify students with gifts and talents and combine the subtotals for an estimate of missing students at the lower boundary.
b. The upper boundary estimate is calculated in the same manner as the lower boundary estimate, but uses the average percentage of students identified with gifts and talents in Non-Title I schools, because they identify about one-third more students with gifts and talents than do their Title I counterparts. This is important because one could argue that this disparity in identification numbers represents missing children in schools that primarily serve students from lower income families.
c. By calculating lower and upper boundaries of missing students, we provide a range of how many students with gifts and talents go unrecognized in this county and by state. Unfortunately, most of these missing children in gifted education live in impoverished areas, with larger proportions attending town and rural schools, and coming from American Indian and Alaska Native, Black, and Latinx families, raising issues of continued racial and economic oppression within the field.
4. Next, we look at these same data by geographic region (e.g., City, Suburb, Town, and Rural) to examine how location affects identification of students with gifts and talents. We apply the same approach by considering schools that report and do not report gifted identification to determine if location affects students' opportunity for identification and, further, how equitable identification is by race in each of these four locales. We do this nationally and by state. In each of the above analyses we provide a representation index by race (Overall $\mathrm{RI}=\frac{\% \text { [each race in each community) Gitted }}{\% \text { [each race in each community]Total }}$) to quantify the extent of underrepresentation or to highlight races that are well-represented. We also provide Rls by locale.
5. Finally, we provide grades for each state using the most recent Civil Rights Data Collection (CRDC) data (2016) concerning:
a. Access to gifted identification: If the percentage was equal to or greater than 90%, the state received an A for general access to gifted identification. If the percentage was equal to 80% through 89.99% then the state received a B; from $70 \%-79.99 \%$ was a C; from 60% to 69.99% was a D; and finally, less than 60% resulted in a grade of F.
b. Equity of identification between Title I/Non-Title I schools: Ratios of .950 or greater were assigned an A; . 900 to .949 a B; . 850 to .899 a C; . 800 to .849 a D. Less than .800 was considered failing.
c. Equity of access by race: Ratios of .950 or greater were assigned an A; .900 to .949 a B; .850 to .899 a C; .800 to .849 a D. Less than .800 was considered failing. (The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access.)
d. Equity of identification in different locales: We examined City, Suburb, Town, and Rural locales by race using RIs for Overall schools, Non-Title I and Title I schools.
e. Missingness from gifted education: Missingness from gifted education was graded pass/fail by state based on the percentage of missing students, with 20\% of fewer missing receiving a passing grade.

BACKGROUND LITERATURE

Context for the Literature

In this report, we address the problem of inequity demonstrated across time with the most comprehensive data sets available, and we consider multiple factors resulting in continued inequity in gifted education. There are a variety of variables that affect inequity, and if inequity was easily solved, such disparities would not exist in gifted education. Thus, we review in the following paragraphs the general background concerning underrepresentation in gifted education by race, income, and locale. Our work builds on previous work, but with a comprehensive view of access, equity, and missingness combined. First, this includes analysis of who has access to identification, followed by how equitably those who do have access are identified, then finally with estimates of students who are missing; calculated using a combination of students who have no access and students who are underidentified where they have access to identification. We believe that districts across the country can follow our methods and develop baseline understandings of where they fall on the access, equity, and missingness continua. From these understandings, they can begin to develop action plans to mitigate underrepresentation and improve services, implementing a rich complement of strategies and programs to fully develop the gifts and talents of their youth.

Giftedness and Historical Underrepresentation

Gifted education in the United States has a long, persistent, and pervasive history of inequity in identification and services for youth who come from poverty; who are American Indian/Alaska Native, Black, Latinx, and Native Hawaiian or Pacific Islander; and/or who are learning to speak English. Similarly, education for these same children has a legacy of being inferior to that of White and Asian students and students whose families have financial means. For decades, scholars have written about how students from poverty (including poor White students) and students of "minority" backgrounds are disadvantaged in schools and how their talents often go unrecognized and undeveloped (e.g., Passow, Goldberg, \& Tannenbaum, 1967; Renzulli, 1973; Torrance, 1968; Witty \& Jenkins, 1934). Literally volumes of literature exist about
disparities in educational opportunity, educational quality, and educational outcomes, with some of that work focused on development and identification of talent.

In an effort to capture and develop more human talents, scholars have called for a broadened definition of giftedness for decades. In 1978, Renzulli proposed giftedness as a behavior in his Three Ring Conception of Giftedness. He suggested giftedness could be found in any area of human endeavor and required only above-average ability in that area when coupled with creativity and task commitment. Renzulli's ground-breaking theory was followed by Gardner's Theory of Multiple Intelligences (1983) and Sternberg's Triarchic Theory (1985), each expanding the notion of what giftedness and talent means. The National Excellence report (U.S. Department of Education [USDOE], 1993), which was the first report on giftedness since Marland's 1972 report, expanded the notion of giftedness as well as called for recognition of its existence across all populations and all areas of human endeavor as follows:

Children and youth with outstanding talent perform or show the potential for performing at remarkably high levels of accomplishment when compared with others of their age, experience, or environment. These children and youth exhibit high performance capability in intellectual, creative, and/or artistic areas, pose an unusual leadership capacity, or excel in specific academic fields. They require services or activities not ordinarily provided by the schools. Outstanding talents are present in children and youth from all cultural groups, across all economic strata, and in all areas of human endeavor [emphasis added]. (p. 11)

In the 2000s, the National Association for Gifted Children (NAGC, n.d.) defined giftedness as:

Gifted individuals are those who demonstrate outstanding levels of aptitude (defined as an exceptional ability to reason and learn) or competence (documented performance or achievement in top 10% or rarer) in one or more domains. Domains include any structured area of activity with its own symbol system (e.g., mathematics, music, language) and/or set of sensorimotor skills (e.g., painting, dance, sports). (para. 5)

Yet despite these contributions, definitions, and calls for equity, most programs today still include a standardized measure of intelligence or aptitude for identification (NAGC, 2013; NAGC 2015). The overreliance on these measures as the only or most important pathway into a program contributes to the inequities we see across the country (Gentry et al., under review).

Recently, we conducted a review of intelligence measures, their normative groups, their validity including cross group analyses, and their role across the United States in identifying students with gifts and talents. Of the 42 states (this includes the District of Columbia) that
responded to the State of the States survey (NAGC, 2015), 13 require an IQ score for identification and 20 states identify one or more approved IQ measures for use in identification. The problem is that among the top five group-administered tests (Cognitive Ability Test [CogAT; Lohman, 2011]; Kaufman Brief Intelligence Test [KBIT; Kaufman \& Kaufman, 2004a, 2004b]; Otis-Lennon School Ability Test [OLSAT; Otis \& Lennon, 2003a, 2003b, \& 2003c]; Naglieri Nonverbal Ability Test [NNAT; Naglieri, 2018a, 2018b, \& 2018c]; Woodcock Johnson Test for Cognitive Abilities IV [WJ IV; McGrew, LaForte, \& Schrank, 2014]) and top five individually-administered tests (i.e., Kaufman Assessment Battery for Children II [KABC; Kaufman \& Kaufman, 2004b]; Raven's Standard Progressive Matrices [RPM; Raven, Raven, \& Court, 2000a, 2000b]; Stanford-Binet Intelligence Test V [SB; Roid, 2003]; Test of Nonverbal Intelligence IV [TONI; Brown, Sherbenou, \& Johnsen, 2010]; Wechsler Intelligence Scale for Children V [WISC; Weschler, 2014a, 2014b]) listed by these states, only the TONI provided means for racial groups, and these means were lower for Black and Latinx participants. Most tests were developed by using a sample approximating the national percentages of Black, Latinx, and White students in the country, and only the Woodcock Johnson included American Indian/Alaska Natives in their samples. Only the CogAT7, OLSAT8, TONI4, and WJ IV conducted invariance testing among the racial groups in their samples, but none shared group means. The continued and widespread use of tests such as these to identify students with gifts and talents, despite the fact that they consistently yield disparate racial results, may be one factor in continued underrepresentation. If test developers cannot and do not show that their measures yield equitable scores across racial groups, then these tests cannot be expected to yield equitable results across these groups. And the use of these scores as the most important or as a required pathway into gifted education results in underidentification of children who come from low-income families, children who speak English as a new language, and children who are American Indian/Alaska Native, Black, Latinx, or Native Hawaiian or Pacific Islander (Gentry et al., under Review; Peters, Gentry, Whiting, \& McBee, 2019).

Office of Civil Rights Data as a Metric of Underrepresentation

Many before us have used the Office of Civil Rights data to examine equity among races in gifted education, as this is the only federal data base to report identification as gifted by race. Sadly, for example, Ford (1998), Yoon and Gentry (2009), and Peters et al. (2019) and others have all found serious and consistent inequities along racial lines over time. Specifically, as Yoon and Gentry (2009) reported, AIAN, Black, and Latinx youth are less likely than their White and Asian peers to be identified as gifted, and this trend dates back to 1978. Peters et al. (2019) followed Yoon and Gentry's analysis adding data about Limited English Proficiency (LEP) and

Individuals with Disabilities Education Act (IDEA) to their study, and again, reported little change in underrepresentation over time. Now, with even more nuance, as we show in this report, these inequities persist, and when compared with previous reports, little has changed in decades.

What we did in this technical report that sets it apart from previous work involved adding school Title I status (i.e., Title I or Non-Title I) and Locale (i.e., City, Suburb, Town, Rural) variables to the data set. Doing so enabled us to better understand access, equity, and missingness across schools that serve poor students and within differing community locales.

Second, before examining any inequity, as has been done in the past, frequently using representation indices, we determined whether students had access to identification. As described in our methods section, finding a Representation Index (RI) involves dividing the percentage of a specific race (or any group) in the gifted population by the percentage of the same race (or any group) in the general population. This yields an RI, a ratio that indicates how proportionally represented the group is in the gifted program. Previous researchers, Gentry included, have calculated RI for different states, without first determining whether and to what extent children are even identified with gifts and talents across that state. Doing so actually reduced the percentage of students reported as identified as gifted as all of the schools that fail to identify any children are included in the calculations. For example, as we found in this report, in 2015-2016, 6.45\% of students nationally were identified with gifts and talents. However, when we calculated this percentage from only schools that identify, the percentage identified is 9.57%, a more accurate number reflecting the percentage of students identified in schools that actually identify students with gifts and talents. Thus, in addition to adding variables to the data sets, we found which schools in each state identify students with gifts and talents and reported this percentage of schools (and the percentage of students who attend school that identify) as access. We then used only the schools that actually identify students with gifts and talents in our analyses to examine RIs and equity.

Finally, taking into account the schools in all the states across the country that do not identify students with gifts and talents and the underidentification of students in schools that do identify, we estimated students missing from gifted education identification by race for each state.

This three-step approach adds richness and understanding to what is known about equity, extending previous work by adding variables and information on access and missingness previously not addressed in the literature.

Related Reports

A variety of reports in the past decade have highlighted issues with inequity, achievement gaps, and poverty gaps. In the following paragraphs, we highlight a few of these that are related to the work in this report.

The Achievement Trap (Wyner, Bridgeland, \& Dilulio, 2009) using longitudinal date from the Early Childhood Longitudinal Study-Kindergarten Cohort (ECLS-K), the National Education Longitudinal Study (NELS), and the Baccalaureate and Beyond Longitudinal Study (B\&B), examined high-achieving (achieving in the top quartile) students from families living below the median income from kindergarten through graduate school. Disparity begins early with only 28% of high-achieving first graders coming from low-income families, whereas 72% come from higher income families. These high-achieving students from low-income families are less likely to persist as high achievers than their higher income peers, and they are twice as likely to drop out of school. Once in college the trend continues, as they are less likely than their higher income peers to complete a bachelor's degree (54% vs. 78%), less likely to attend selective colleges in favor of less selective colleges (19% vs. 29\%), and less likely to receive a graduate degree (29% vs. 47%). All of these outcomes reveal a loss of talent among high-achieving students from low-income families.

This was followed by Unlocking Emergent Talent (Olszewski-Kubilius \& Clarenbach, 2012) a monograph commissioned by the National Association for Gifted Children regarding how to support high achievement of students with high ability who come from low-income families. In this report, the authors identify familiar barriers including defining giftedness as already developed rather than potential, misconceptions about high-potential students from poverty, a lack of pedagogy and curriculum supportive of talent development, identification practices, program policies, and lack of supplemental programming. They go on to make good suggestions for changes to address these barriers and facilitate development of student talents.

In Mind the Other Gap, Plucker, Burroughs, and Song (2010) coined the term excellence gaps, or performance gaps among the highest achievers by race (Black, Latinx, White, only), English Language Learner status, and eligibility for federal meal subsidy, and examined their existence by state using National Assessment of Educational Progress (NAEP) data. This report was soon followed by Talent on the Sidelines (Plucker, Hardesty, \& Burroughs, 2013). In each of these reports, Plucker and his colleagues quantified the excellence gaps. They found excellence gaps among White youth and their Black and Latinx peers, between non-ELL and ELL students, and between those not eligible for federal meal subsidy and those who qualified for this subsidy. These excellence gaps generally persisted across time and subject areas, and in the few instances gaps were shrinking, it was due to decreased performance among the top subgroups. In the 2013 publication, Plucker et al. emphasized the existence of an underclass and discussed how this is a loss of potential talent and productivity to the nation.

The Jack Kent Cooke Foundation supported two recent reports by Plucker and colleagues (Plucker, Giancola, Healey, Arndt, \& Wang, 2015; Plucker, Glynn, Healey \& Dettmer, 2018) that assessed the extent to which states have policies and practices that address the needs of highability learners from low-income families. The 2018 report chronicled changes since the 2015 report and graded each state on excellence (subcategories: Policies, Participation, Outcomes) and closing excellence gaps (same subcategories). Although some improvements in policy related to programming and gaps were made from 2015 to 2018, few states were addressing the massive excellence gaps that exist and that persist. The authors made recommendations to districts to attend to both excellence and excellence gaps; to maximize opportunities for identification for advanced learning and to ensure that all high-ability youth have access to advanced educational opportunities; to remove barriers to pace of study; to hold LEAs accountable for the performance of their high-ability students from all income groups; and to create comprehensive plans for talent development. Examining our findings concerning access, equity, and missingness as compared with Plucker and colleagues' findings will provide additional insights into how states perform concerning talent development and underserved youth.

In January of 2018, Yaluma and Tyner addressed the "gifted gap" among high-poverty schools. They investigated the prevalence of gifted programs in elementary and middle schools in low-, medium-, and high-poverty schools finding, like us, that about 68% of schools have a gifted program and that high-poverty schools are as likely as low-poverty schools to have such programs. In addition, schools with larger proportions of "minority" students are as likely to have gifted programs as schools with smaller proportions of these students. However, consistent with our findings they reported that students in low-poverty schools are twice as likely to be identified with gifts and talents than their peers in high-poverty schools, and in all schools, Latinx and Black students are underrepresented when compared with White and Asian students. These researchers omitted AIAN and NHPI students from their analyses. So, for students of color and students who attend high-poverty schools, the "gifted gap" continues.

The Institute for Education Sciences released Status and Trends in the Education of Racial and Ethnic Groups in 2018 (de Brey et al, 2019), and although this report did not deal directly with identification or programming for students with gifts and talents, the authors analyzed 30 indicators related to demographics (9 indicators), achievement (4 indicators), student behaviors and persistence (12 indicators), and outcomes of education (4 indicators). The report is comprehensive, and despite over time more students of all races completing high school and attending college, racial differences persist and exist concerning these attainments. With regard to achievement, de Brey et al. investigated gaps between Black and White and between Hispanic and White youth in reading and math in grades 4 and 8 from 1992 to 2017. Although some gaps narrowed, others remained constant. All gaps are substantial, ranging in 2017 from 23 points (Hispanic/White) for grade 4 reading to 32 points (Black/White) for grade 8 math. In
short, this report confirmed for all students what we see concerning gifted students by race related to all the indicators measured.

Locale

Gifted education by locale is not well investigated, with a few studies on rural or urban locations providing context of underrepresentation, often connected to fewer resources in these locales. For example, Howley, Rhodes, and Beall (2009) discussed the challenges of gifted education in rural areas, which included declining populations, poverty, changing demographics, accountability requirements and the negative effects these challenges have on programming for gifted youth. In Texas, Kettler, Russell, and Puryear (2015) found that of 1029 school districts, rural schools spent a smaller proportion of their expenses and dedicated a smaller percentage of staff for gifted education than did school districts in other locales. Further, they found that town schools allocated fewer staff members for gifted education compared to city and suburban locales. Lawrence (2009), in her literature review of rural gifted education identified barriers affecting rural students with high ability. Among the challenges she identified were belief by educators that these students will make it on their own coupled with resistance to differentiate or accommodate their special learning needs; lack of school resources for talent development programs; lack of teacher expertise in recognizing and developing student talents; and lack of parental support for advanced programming. In the most recent and comprehensive report today on talented youth in rural areas, Lynn and Glynn (2019) reviewed challenges and barriers faces by talented rural youth and their educators and offered 14 recommendations for identifying and educating rural students with exceptional promise. These recommendations include changing identification practices to use quantitative measures appropriately, incorporating student interviews as well as community and educator feedback, and paying attention to underserved youth. Lynn and Glynn (2019) also made recommendations about academic services for talented rural youth. Among these recommendations were exposing students to people and opportunities outside of their rural areas, engaging educators in professional development, providing consistent acceleration and enrichment programming, and creating a robust peer community with older role models while working closely with families.

Poverty

It is well known that youth from poverty are underrepresented in gifted education, but because individual poverty information is frequently hard to obtain, some of this literature
focuses on schools, neighborhoods, or zip codes that indicate overall wealth of the areas in which schools exist. In this report, we used Title I status (more than 40% of children eligible for federal meal subsidy) by school to define poverty because school poverty is a strong predictor variable and because we did not have individual income data. School-level poverty has received little attention from researchers in gifted education or from studies concentrating on highachieving students. However, in general education, poverty has been investigated not only at the student level, but also at the school level. Vanderhaar, Muñoz, and Rodosky (2006) argued that school poverty rate is a stronger predictor of academic failure than student-level poverty. To be specific, the percentage of students who received free or reduced-price lunches within a school was associated with the number of students who scored below the state standards of achievement. Furthermore, despite a relatively small number of studies, school poverty has been found to be negatively associated with student academic attitudes and motivation (Battistich, Solomon, Kim, Watson, \& Schaps, 1995). Less qualified teachers and a lack of available school resources for use in educating students were found as possible reasons for the negative effects of impoverished schools on student achievement (Clotfelter, Ladd, Vigdor, \& Wheeler, 2006; Myers, Kim, \& Mandala, 2004).

Past, Present, Future

Despite the large body of literature documenting underrepresentation for decades, much less literature exists concerning effective interventions. Baldwin (1987); Frasier (1979); Passow et al. (1967); Renzulli (1971, 1973); Torrance (1968); and Witty and Jenkins (1934) are just a few of the pioneers who, early on, offered suggestions, many of which are relevant today, to address equitable talent development for underserved youth. Renzulli (1971), considering talent potential among disadvantaged youth, discussed the need for measures that are not language dependent, methods that do not rely on written responses, and for identification to "be a continuous process that begins in the early years and that is carried out with unusual frequency" (p. 124). Frazier (1979) suggested that issues surrounding culturally disadvantaged youth needed to be rethought, and Baldwin (1987) called for flexibility in identification and teacher education. Yet, underrepresentation continues today.

What we know is that if we continue to turn a blind eye to this problem, underrepresentation, loss of talent, and status quo will persist. Peters and Engerrand (2016) identified two themes in the literature concerning the causes of underrepresentation. First, they explained a belief that assessments used in identification are inherently flawed or biased against certain groups. Second, with a more nuanced view, they suggested it is the ways in which the students are identified that results in underrepresentation. For example, if a student can only be considered
for identification through a teacher referral, many students will never have the opportunity for consideration. Peters and Engerrand (2016) discussed how unequal opportunities for learning must be considered because fewer opportunities to learn puts some students, many from families with low incomes, at a disadvantage when compared with other students who have had more learning experiences. Much is written on equity of identification, and as important as this is, when one considers opportunities to learn, it becomes necessary to move beyond the identify and serve mentality to a serve and identify mentality (Gentry, 2009). Simply put, more talent development programs need to be in place that will discover and cultivate talents (e.g., Gentry, 2009; Renzulli, Gentry, \& Reis, 2014).

To be fair, this report focuses on the recent and longstanding status of underrepresentation, with an eye to the future and a tenant that if educators do not recognize the problem they cannot change it. Energy, resources, policies, and commitment to reverse these longstanding trends are essential as we move into the future. It is our intention that school personnel can follow our methods and review their own data, then, as Plucker et al. (2015) recommended, create a comprehensive plan for talent development with an eye toward excellence and equity. These steps include changes in identification practices, more inclusive programming practices, and implementation of programs designed to develop talents.

REPORT CARD METHODS

In developing state report cards, we compared each state to standards of reasonable access and representation as criterion, rather than to a normative number. Definitions about what giftedness is and who qualifies for services vary across states, and even within states. Policies, laws, and practices in the field of gifted education vary widely across the country from zero polices to strict laws. Thus, we used proportional data and criterion-referenced benchmarks from which to derive grades concerning the opportunity to be identified with gifts and talents and equity across underserved groups including Non-Title I/Title I Schools, Race, and Locale. Finally, we estimated the number of students missing across each state. We used the data primarily from 2015-2016, with secondary data sources from 2000, 2011-2012, 2013-2014-all census data years-to develop a report card for each state in these areas. In addition, due to their small populations, we noted for AIAN and NHPI on the report card when a state had a substantial population of these children. Specifically, for AIAN, this included the 27 states in which 90% of these youth reside. For NHPI, it included the 20 states in which 90% of these youth reside.

In general, to develop grades we set criteria for said grades as explained in the following sections. With the exception of opportunity to be identified as gifted, where we used a straight grading scale of 60% for a D to 90% for an A, we used the Equal Employment Opportunity Commission adverse impact measure of . 80 (29 C.F.R. § 1607.4(D), 1978), comparing this to a standard of 1.00 (rather than to other groups) as a passing grade. This threshold was applied to gifted education by Ford (2013) in her testimony in McFadden vs. Board of Education for Illinois School District U-46 (2006) concerning severe underrepresentation of Hispanic and Black youth in gifted programs. Known as the four-fifths rule and codified by law (29 C.F.R. §1607.4(D), 1978), this threshold denotes adverse impact as follows,
> a selection rate for any race, sex, or ethnic group which is less than four-fifths or 80% of the rate for the group with the highest rate will generally be regarded by the Federal enforcement agencies as evidence of adverse impact, while greater than four-fifths rate will not generally be regarded by Federal enforcement agencies as evidence of adverse impact." (29 C.F.R. § 1607.4(D), 1978; see section "Adverse impact and the four-fifths rule")

Given that identification with gifts and talents and placement into special programs afford opportunities to children for advanced learning, underrepresentation as in the McFadden v. Board of Education and as found throughout these analyses is discriminatory and constitutes adverse impact.

In developing the report cards, we used the following procedures and criteria:

Criterion 1: Laws

First we noted whether the state has a mandate or law for gifted education, briefly describing the law (and providing a link to it when applicable).

Criterion 2: Opportunity to Be Identified With Gifts and Talents

Second, we graded the opportunity to be identified as gifted, and thereby receive services. Each state received a grade for the percentage of students who attend schools that report identifying students.

If the percentage was equal to or greater than 90%, the state received an A for general access to gifted identification. If the percentage was equal to 80% through 89.99%, then the state received a B; from $70 \%-79.99 \%$ was a C; from $60 \%-69.99 \%$ was a D ; and finally less than 60% resulted in a grade of F.

- A rank from 1 to 51 was provided to reveal the state's relative position compared with other states concerning overall opportunity for identification.
- Longitudinal data from 2000 to present were examined to determine whether access was improving (\% increasing), inconsistent, or declining (\% decreasing). These trends are provided in the state report.

To further understand opportunity for identification, we looked at equity of identification between Title I and Non-Title I schools by examining the percentage of students identified in each of these types of school. Nationally, in 2015-2016, an average of 9.57\% of students who attended schools that identify giftedness were identified, but this percentage was greater in Non-Title I (13.46%) than in Title I (7.86%) schools, meaning Title I schools identify only 58.11% of the students that Non-Title I schools identify. Therefore, we examined this inequity in each state and calculated the ratio of students between these settings by dividing the percent identified in Title I schools by that of those identified in Non-Title I schools. A ratio of 1.000 would indicate perfect equity between Non-Title I and Title I schools concerning the percentage of students they identify for gifted services. Ratios greater than 1.000 indicate a larger percentage of students identified with gifts and talents in Title I than in Non-Title I schools. Therefore, ratios
of .950 or greater were assigned an $\mathrm{A}, .900$ to .949 a B, to .850 to .899 a C, and .800 to .849 a D. Less than .800 was considered failing. A rank from 1 to 51 was provided to highlight the state's relative position in comparison to other states with regard to equity between Title I and NonTitle I Schools.

Finally, concerning opportunity for identification, we investigated the proportion of students from each race who have access to be identified. For example, nationally, 67.38% of students attend a school in which they have an opportunity to be identified with gifts and talents; yet only 61.87% of AIAN students attend such schools. Thus, AIAN students have only 92% the access of other students as determined by a ratio of AIAN student access to National student access ($61.87 / 67.38=.9183$). We calculated this ratio for each racial group to investigate whether underrepresentation could be attributed in part to lack of access to be identified. Then we applied the same grading scale as described above in the Title I status section.

Criterion 3: Equity Across Underserved Groups

To better understand how Title I status affects group opportunity and representation, we used Representation Indices (RI), to examine the proportional representation of subgroups (e.g., Non-Title I/Title I; Racial Groups; Locale groups) within gifted populations to their occurrence in the general populations. A RI is a simple formula that yields a ratio, which quantifies how represented a subgroup is (in this case students identified as gifted) compared with their presence in the general population. Computing an RI requires the percentage of students identified as gifted who come from a given student population as well as the percentage of students in an overall population from that same subgroup. For each calculation we included schools that identify students with gifts and talents and excluded schools that do not identify.

$$
\mathrm{RI}=\frac{\% \text { Gifted }}{\% \text { Total }}
$$

For example, if a state's identified gifted population is made up of 10% Black students, but the state's population is 20% Black students, then the RI for Black students would be:

$$
.50=\frac{.10}{.20}
$$

An RI equal to or greater than one indicates that the target subgroup is represented as expected or well-represented; whereas, an RI of less than one indicates that the target group is underrepresented.

We examined equity overall by race, then by race and Non-Title I or Title I schools. We used Representation Indices (RI) to examine the ratios with which race is represented Overall, in Non-Title I schools, and in Title I schools. An RI of 1.000 would indicate perfect equity. Rls greater 1.000 indicate well-representation of the subgroups. Therefore, RIs of .950 or greater were assigned an A , .900 to .949 a $\mathrm{B}, .850$ to .899 a C , and .800 to .849 a D. Less than .800 is considered failing.

$$
\begin{aligned}
& \text { Overall } \mathrm{RI}=\frac{\% \text { [each racelGifted }}{\% \text { [each race]Total }} \\
& \text { Non-Title | RI }=\frac{\% \text { [each race] Gited in Non-Tite } \mid \text { Schools }}{\% \text { [each racee Total Students in Non-Titel ISchools }} \\
& \text { Title } \left\lvert\, \mathrm{RI}=\frac{\% \text { [each race] Gifted in Title } \mid \text { Schools }}{\% \text { [each race] Total Students in Titte } \mid \text { Schools }}\right.
\end{aligned}
$$

Finally, we looked at equity by race, among communities (i.e., City, Suburb, Town, Rural) and Non-Title I or Title I schools. We used RI to examine the proportion that race overall, and by community in Non-Title I schools and in Title I schools, is represented. A proportion of 1.00 would indicate perfect equity. Proportions greater 1.000 indicate well-represented subgroups. Therefore, proportions of .950 or greater were assigned an A, 900 to .949 a B, .850 to .899 a C, and .800 to .849 a D . Less than .800 is considered failing.

Criterion 4: Students Missing From Gifted Education Identification

Finally, we report missing students with lower and upper boundary estimates as follows. Note that students from all racial categories can be missing due to underrepresentation in Title I schools. Although Asian and White students are frequently well represented, we do not consider this as overrepresentation, nor do we adjust the missingness estimates due to wellrepresented subgroups.

Although we report lower and upper boundary missingness estimates as described in the following paragraphs, states are graded and ranked based on the more conservative lower boundary estimate. Missing 20\% or fewer gifted students is graded as passing. Missing more than 21% is graded as failing. Ranking is done from fewest percent missing to greatest percentage missing from 1st to 51st.

The lower boundary estimate was derived from the average percent of students identified in schools that identify students with gifts and talents. We use this percentage and multiply it by the number of students from each race who attend schools that do not identify students with gifts and talents. A total of missing students from each race provides the number of students missing due to lack of access to identification because they attend schools that do not identify. Term definitions and formula follow for the lower boundary estimate.

AvgSchID\% is the average percentage of students identified in schools that identify
\#(Race)NonIDSch is the number of students from a racial group in schools without identification
AvgSchID\% x \#(Race)NonIDSch = \#Missing(Race)GTNonIDSchools
Next we calculate the number of students missing from schools that identify from each race using the average percent multiplied by the number of students in that race. Then we subtract the actual number of students identified from this number. A total of missing students from each race provides the number of students missing due to underidentification within schools that identify students with gifts and talents. This includes Title I schools that identify fewer students than do their Non-Title I counterparts as well as any type of school in which some racial groups are underidentified.

AvgSchID\% is the average percentage of students identified in schools that identify
\#(Race)IDSch is the number of students from a racial group attending schools that identify
\#GT(Race)IDSch is the number of students from a racial group identified with gifts attending schools that identify
(AvgSchID\% x \#(Race)IDSch) - \#GT(Race)IDSch = \#MissingGT(Race)IDSchool

To complete lower boundary estimates, we subtotal each race from schools that do and do not identify students with gifts and talents and combine the subtotals for an estimate of missing students at the lower boundary.

The upper boundary estimate was based on the assumption that all schools ought to identify students at the rate of the wealthier, Non-Title I schools. Therefore, the upper boundary was derived from the percent of students identified in Non-Title I schools that identify students with gifts and talents. We use this percentage and multiply it by the number of students from each race who attend schools that do not identify students with gifts and talents. A total of missing students from each race provides the number of students missing due to lack of access to identification because they attend schools that do not identify. Term definitions and formula follow for the upper boundary estimate.

NonTitle ISchID\% is the percentage of students identified in Non-Title I schools that identify
\#(Race)NonIDSch is the number of students from a racial group in schools
without identification
NonTitle ISchID\% x \#(Race)NonIDSch = \#Missing(Race)GTNonIDSchools
Next we calculate the number of students missing from schools that identify from each race using the percentage of students identified in Non-Title I schools multiplied by the number of students in that racial group. Then we subtract the actual number of students identified from this number. A total of missing students from each race provides the number of students missing due to underidentification within schools that identify students with gifts and talents. This includes Title I schools that identify fewer students than do their Non-Title I counterparts, as well as any type of school in which some racial groups are underidentified.

NonTitle ISchID\% is the average percentage of students identified in schools that identify
\#(Race)IDSch is the number of students from a racial group attending schools that identify
\#GT(Race)IDSch is the number of students from a racial group identified with gifts attending schools that identify
(NonTitle ISchID\% x \#(Race)IDSch) - \#GT(Race)IDSch = \#MissingGT(Race) IDSchool

To complete upper boundary estimates, we subtotal each race from schools that do and do not identify students with gifts and talents and combine the subtotals for an estimate of missing students at the upper boundary.

Based on the missingness estimates at the upper and lower boundary, we calculated the percentage of students nationally, in each state, and for each race who are identified out of the number that should have been identified. To do this, we divided the number of students identified
overall, and then by race, by the number of students identified plus the lower boundary, then we repeated this equation using the upper boundary. This gives a range of identified students by percentage. We multiplied each result by 100 to convert to a percentage, then subtracted this result from 100 to provide the percentage of missing students for each boundary.

Overall:

1. $\frac{\text { Actual ID (overall) }}{\text { Actual ID (overall) }+ \text { Lower Boundary Missing Students (overall) }} \times 100=\%$ ID at Lower Boundary
2. $\quad 100-\%$ ID at Lower Boundary $=$ \% Missing at Lower Boundary
3. $\frac{\text { Actual ID (overall) }}{\text { Actual ID (overall)+Upper Boundary Missing Students (overall) }} \times 100=\%$ ID at Upper Boundary
4. $100-\%$ ID at Upper Boundary $=\%$ Missing at Upper Boundary

Each Race:

1. $\frac{\text { Actual ID (Each Race) }}{\text { Actual ID (Each Race)+Lower Boundary Missing Students (Each Race) }} \times 100=\%$ ID at Lower Boundary
2. $100-\%$ ID at Lower Boundary $=$ \% Missing at Lower Boundary
3. $\frac{\text { Actual ID (Each Race) }}{\text { Actual ID (Each Race)+Upper Boundary Missing Students (Each Race) }} \times 100=\%$ ID at Upper Boundary
4. $100-\%$ ID at Upper Boundary $=\%$ Missing at Upper Boundary

National Report Card and Individual State Report Cards

As described above, states were assessed and graded on legislation, access, equity, and missingness. Following each report card is a detailed report of data and findings. This assessment includes detailed demographic data, data from all races and locales, highlights of findings, interpretation of findings organized by report card categories to guide the discussion. State reports are then synthesized and summarized to provide a comprehensive picture across the United States concerning access, equity, missingness, and trends in gifted education.

REPORT CARDS

Following the methods outlined, a report card for the Nation and for each state was created. These report cards with narrative of methods and findings can be downloaded at www.purdue. edu/geri by clicking Access Denied. At this site a link is also provided for an interactive website where visual summaries of the findings can be found. Each report card contains summaries, grades, and findings from the states concerning Laws, Access, Equity, and Missingness revealing trends, exceptions, areas for improvement, and areas of promise.

[^0]
Key Findings and Recommendations

Nationally access, equity, and missingness are an issue in gifted education. Proportionally fewer students are identified in Title I schools than in Non-Title I schools. Generally, AIAN, Black, and Latinx students remain underrepresented regardless of type of school or setting, and underrepresentation is not a function of access in places that identify, except for AIAN youth who are less likely than other students from other racial groups to attend schools that identify. However almost one-third of students and 40% of schools do not identify students. Missingness estimates reveal, in general, more students are missing than are identified, and for underserved groups this estimate is up to two (AIAN, Latinx, NHPI) to three (Black) times the number of students who are identified.

ALABAMA (AL) REPORT CARD

n The state of Alabama mandates by law identifying and serving "intellectually gifted children." This mandate is partially funded.

Opportunity to Be Identified as cifted
Access to Identification Rank
Equity of Access Between Title I and Non-Title I
Schools
Rank
Equity of Access by Race

Grade or Rank Notes and Explanation

74.45% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access
Students in Title I schools are identified at 61\% of the rate of those in Non-Title I schools (7.83% vs. 12.76% yields a ratio of 0.61 between Title I and Non-Title I schools)

Rank among 50 states and DC in equity between Non-Title I and Title I schools 1.10 AIAN The ratio of race access to general access in schools that identify 0.99 Black indicates whether students proportionally attend schools that 1.00 Latinx identify. Ratios close to or greater than 1.00 means good access, so 1.00 NHPI underrepresentation is not a function of lack of access.

Students Missing From Gifted Education Identification: 35\% at the Lower Boundary. Grade: Fail. Rank: 23

Alabama identified 51,695 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 28,237 to 43,746 , (35% to 46%) with most of these missing students coming from Title I schools and from underserved populations. For example, 8,320 Black children are identified, with 14,917 to 23,506 (64% to 74%) missing. These numbers are detailed in Table 7 in the accompanying state report.

Key Findings and Recommendations

With a mandate for identification, only 75% of students attend schools where identification occurs. Disparity exists between Title I and Non-Title I school identification rates, and Black and Latinx children are underidentified, averaging RIs well below 1.00 of 0.49 and 0.54 , respectively. Alabama has better equity for AIAN students than do most other states. But given the underrepresentation of Black and Latinx youth in Title I and Non-Title I schools and in all locales, Alabama needs to reform policy and procedures to address issues of equity and access in its gifted programming.

aLASKA (AK) REPORT CARD

The state of Alaska mandates by law identifying, but not serving, "gifted children." This mandate is not funded.

Underserved Groups (in schools that identify)	Category	Statewide Grade-RI	City Grade-RI	Suburb Crade-RI	Town Grade-RI	Rural Grade-RI
AIAN Equity	Overall	F-0.34	F-0.39	F-0.44	F-0.31	F-0.27
($n=10,320$)	Non-Title I	F-0.34	F-0.34	F-0.54	F-0.32	F-0.32
Substantial population	Title I	F-0.37	F-0.44	F-0.23	F-0.32	F-0.33
Black Equity	Overall	F-0.57	F-0.47	F-0.56	F-0.78	B-0.91
\# $(n=3,708)$	Non-Title I	F-0.49	F-0.35	F-0.54	F-0.70	C-0.89
$\overline{0}$	Title I	F-0.69	F-0.56	F-0.66	A-1.01	F-0.45
Latinx Equity	Overall	F-0.66	F-0.60	F-0.67	F-0.72	F-0.61
($n=7,753$)	Non-Title I	F-0.58	F-0.50	F-0.73	F-0.72	F-0.43
	Title I	F-0.79	F-0.70	F-0.52	F-0.67	A-1.01
NHPI Equity	Overall	F-0.45	F-0.39	A-1.10	F-0.48	F-0.26
($n=3,185$)	Non-Title I	F-0.25	F-0.13	A-0.97	F-0.66	F-0.00
Substantial population	Title I	F-0.62	F-0.52	A-1.54	F-0.28	F-0.71

Students Missing From Gifted Education Identification: 36\% at the Lower Boundary. Grade: Fail. Rank: 24

Alaska identified 6,397 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 3,534 to 4,475, (36% to 41%) with most of these missing students coming from Title I schools and from underserved populations. For example, 241 AIAN children are identified, with 1,873 to $2,230(89-90 \%)$ missing. These numbers are detailed in Table 7 in the accompanying state report.

Key Findings and Recommendations

Despite a mandate requiring identification of youth with gifts and talents, only about 70\% of Alaska's youth attend schools that do so. And 50\% fewer AIAN youth attend these schools than do students from other races. Additionally, fewer students are identified in Title I than in Non-Title I schools. Together these circumstances result in severe underrepresentation of AIAN youth in Alaska. This is especially egregious, as Alaska has the largest proportion of AIAN youth, but serves the smallest proportion as gifted-only one in ten. Few AIAN youth even attend schools that identify students with gifts and talents, and when they do they are underrepresented. Black, Latinx, and NHPI students are also woefully underrepresented in Alaska. Clearly, reform is needed in Alaska concerning access to and equity in gifted education. Policy, practices, and identification procedures need review and revision.

Note. A blank indicates there are no students in that setting from this group; a zero indicates that although there are students in this setting none are identified with gifts and talents.
AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

ARIZONA (AZ) REPORT CARD

The state of Arizona mandates by law identifying and serving "gifted pupils." This mandate is not funded.

Opportunity to Be Identified as Cifted	Grade or Renk	Notes and Explanation	
Access to Identification	D	63.30% of students attend a school that identifies students with gifts and talents Rank	31st
Rank among 50 states and DC in access			

[^1][^2][^3]
ARKANSAS (AR) REPORT CARD

3 The state of Arkansas mandates by law identifying and serving "gifted and talented children and youth." This mandate is partially funded.

	Opportunity to Be Identified as Gifted	Grade or Rank	Notes and Explanation				
	Access to Identification Rank	$\begin{gathered} \text { B } \\ \text { 11th } \end{gathered}$	88.55\% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access				
$\begin{aligned} & 0 \\ & \text { S } \\ & \text { U } \\ & 4 \end{aligned}$	Equity of Access Between Title I and NonTitle I Schools Rank	B ${ }^{\text {9th }}$	Students in Title I schools are identified at 90% of the rate of those in Non-Title I schools (10.67% vs. 11.91% yields a ratio of 0.90 between Title I and Non-Title I schools). Rank among 50 states and DC in equity between Non-Title I and Title I schools				
	Equity of Access by Race	$\begin{aligned} & \text { A } \\ & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{C} \end{aligned}$	0.98 AIAN 0.98 Black 0.98 Latinx 0.89 NHPI	The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access.			
	Underserved Groups (in schools that identify)	Category	Statewide Grade-RI	City Grade-RI	Suburb Grade-RI	Town Grade-RI	Rural Grade-RI
	AIAN Equity	Overall	F-0.69	F-0.78	F-0.71	F-0.51	F-0.74
	($n=2,719$)	Non-Title I	F-0.53	F-0.44	A-1.01	F-0.15	F-0.62
		Title I	F-0.71	D-0.81	F-0.67	F-0.55	F-0.75
	Black Equity	Overall	D-0.82	A-1.00	F-0.55	F-0.62	F-0.78
	($n=84,202$)	Non-Title I	F-0.54	F-0.45	F-0.34	F-0.56	D-0.80
		Title I	D-0.84	A-1.02	F-0.57	F-0.62	F-0.78
	Latinx Equity	Overall	F-0.58	F-0.54	F-0.46	F-0.58	F-0.63
	($n=51,373$)	Non-Title I	F-0.40	F-0.33	F-0.55	F-0.46	F-0.35
		Title I	F-0.59	F-0.55	F-0.44	F-0.59	F-0.66
	NHPI Equity	Overall	F-0.27	F-0.18	F-0.65	F-0.43	F-0.35
	($n=2,761$)	Non-Title I	F-0.38	F-0.09	F-0.38	A-3.43	A-1.82
	Substantial population	Title I	F-0.27	F-0.18	F-0.71	F-0.38	F-0.33

Students Missing From Gifted Education Identification: 18\% at the Lower Boundary. Grade: Pass. Rank: 4
Arkansas identified 46,172 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 10,423 to $12,825,(18 \%$ to $22 \%)$ with most of these missing students coming from underserved populations. For example, 3,229 Latinx children were identified, with 3,186 to $3,874(50 \%$ to $55 \%)$ missing. These numbers are detailed in Table 7 in the accompanying state report.

[^4]AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

CALIFORNIA (CA) REPORT CARD

Identified as Gifted
Access to Identification

Grade or Rank

D 29th

F
Equity of Access
Between Title I and NonTitle I Schools
Rank 20th

Equity of Access by Race

Notes and Explanation

67.78% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access

Students in Title I schools are identified at 69\% of the rate of those in Non-Title I schools (8.81% vs. 12.71% yields a ratio 0.69 between Title I and Non-Title I schools)

Rank among 50 states and DC in equity between Non-Title I and Title I schools 0.77 AIAN The ratio of race access to general access in schools that identify 1.01 Black indicates whether students proportionally attend schools that 1.03 Latinx identify. Ratios close to or greater than 1.00 means good access, so $0.99 \mathrm{NHPI} \quad$ underrepresentation is not a function of lack of access.

[^5][^6]
COLORADO (CO) REPORT CARD

The state of Colorado mandates by law identifying and serving "gifted children." This mandate is partially funded.

[^7][^8][^9]
CONNECTICUT (CT) REPORT CARD

3 The state of Connecticut has mandated by law identifying, but not serving "gifted and talented students." This mandate is not funded.

$\begin{aligned} & \text { en } \\ & \text { H } \\ & \text { U } \\ & 0 \end{aligned}$	Opportunity to Be Identified as cifted	Grade or Rank	Notes and Explanation				
	Access to Identification Rank	$\begin{gathered} F \\ 41 s t \end{gathered}$	33.01\% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access				
	Equity of Access Between Title I and Non- Title I Schools Rank	F	Students in Title I schools are identified at 55% of the rate of those in Non-Title I schools (4.83% vs. 8.74% yields a ratio of 0.55 between Title I and Non-Title I schools). Rank among 50 states and DC in equity between Non-Title I and Title I schools				
	Equity of Access by Race	$\begin{aligned} & \text { F } \\ & \text { A } \\ & \text { B } \\ & \text { C } \end{aligned}$	0.75 AIAN 0.98 Black 0.94 Latinx 0.85 NHPI	The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access.			
$\begin{aligned} & \text { ㄹ } \\ & \text { 울 } \end{aligned}$	Underserved Groups (in schools that identify)	Category	Statewide Grade-RI	City Grade-RI	Suburb Grade-RI	Town Grade-R1	Rural Grade-RI
	AIAN Equity	Overall	F-0.76	A-1.26	F-0.50	F-0.00	A-1.04
	($n=374$)	Non-Title I	A-1.20	A-1.94	F-0.75		A-1.04
		Title I	F-0.36	F-0.00	F-0.38	F-0.00	A-1.08
	Black Equity	Overall	F-0.58	F-0.55	F-0.58	F-0.42	F-0.51
	($n=22,148$)	Non-Title I	F-0.58	F-0.51	F-0.66	F-0.00	F-0.52
		Title I	F-0.63	F-0.70	F-0.56	F-0.40	F-0.40
	Latinx Equity	Overall	F-0.52	F-0.60	F-0.45	F-0.36	F-0.51
	($n=37,911$)	Non-Title I	F-0.61	F-0.67	F-0.50	F-0.52	D-0.80
		Title I	F-0.54	F-0.64	F-0.49	F-0.29	F-0.31
	NHPI Equity	Overall	B-0.92	A-1.39	D-0.83	F-0.00	F-0.00
	($n=162$)	Non-Title I	A-0.96	A-1.49	C-0.88	F-0.00	F-0.00
		Title I	F-0.38	A-1.12	F-0.00	F-0.00	F-0.00

Students Missing From Gifted Education Identification: 69\% at the Lower Boundary. Grade: Fail. Rank: 40
 Connecticut identified 11,906 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 26,033 to 35,327 , (69% to 75%) with most of these missing students coming from Title I schools, from schools that do not identify, and from underserved populations. For example, 1,332 Latinx children were identified, with 6,964 to 9,448 (84\% to 88%) missing. These numbers are detailed in Table 7 in the accompanying state report.

[^10]Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

DELAWARE (DE) REPORT CARD

Opportunity to Be Identified as Gifted	Grade or Rank	Notes and Explanation
Access to Identification Rank	$\begin{gathered} \text { F } \\ \text { 40th } \end{gathered}$	33.17% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access
Equity of Access Between Title I and NonTitle I Schools	F	Students in Title I school are identified at 64% of the rate of those in Non-Title I schools (7.05% vs. 10.94% yields a ratio of 0.64 between Title I and Non-Title I schools).
Rank	24th	Rank among 50 states and DC in equity between Non-Title I and Title I schools
Equity of Access by Race	$\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \mathbf{F} \end{aligned}$	1.11 AIAN The ratio of race access to general access in schools that identify 0.96 Black indicates whether students proportionally attend schools that 1.17 Latinx identify. Ratios close to or greater than 1.00 means good access, so 0.42 NHPI underrepresentation is not a function of lack of access.

[^11]
Key Findings and Recommendations

 opportunity to be identified, resulting in a rank of 44th in missingness among all states. In addition, students attending Title I schools are identified at only 64% the rate of those attending Non-Title I schools, adding to underrepresentation and missing youth. Students who are Black, Latinx and TMR are underidentified. Delaware needs to reform its policies and procedures in gifted education to address issues of access and equity, including reviewing how students are identified.Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

DISTRICT OF COLUMBIA (DC) REPORT CARD

Opportunity to Be
 Identified as Gifted

Grade or Rank Notes and Explanation

Access to Identification Rank	$\begin{gathered} \text { F } \\ \text { 51st } \end{gathered}$	0.00% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access
Equity of Access		
Between Title I and		
Non-Title I Schools Rank		
Equity of Access by Race		

| Underserved Groups
 (in schools that identify) | Category | Statewide | City
 Grade-RI | Suburb
 Grade-RI | Town
 Grade-RI | Rural
 Grade-RI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | Grade-RI |
| :---: |

Students Missing From Gifted Education Identification: 100\% at the Lower Boundary. Grade: Fail. Rank: 51
 The District of Columbia identified 0 students as gifted in 2016. Districtwide, the number of missing students in schools that do not identify ranges from 7,880 to $11,083(100 \%)$. These numbers were calculated using the national lower boundary rate of 9.57% and national upper boundary rate of 13.46%. These numbers are detailed in Table 7 in the accompanying state report.

Key Findings and Recommendations
It is a sad commentary that the nation's capital neither identifies, nor serves, any students with gifts and talents. Clearly policy, legislation,
and action are needed to begin to work with the estimated 7,880 to 11,083 youth who attend DC schools. It is especially troublesome given
that the majority of students attending DC public schools are Black or Latinx. The lack of identification by a district with these demographics
further contributes to the invisibleness of gifted Black and Brown youth.

AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

FLORIDA (FL) REPORT CARD

The state of Florida mandates by law identifying and serving students with "superior intellect." This mandate is fully funded.

Opportunity to Be Identified as Gifted	Grade or Rank	Notes and Explanation
Access to Identification Rank	$\begin{gathered} \text { B } \\ \text { 12th } \end{gathered}$	87.86% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access
Equity of Access Between Title I and Non- Title I Schools	F	Students in Title I school are identified at 51% of the rate of those in Non-Title I (5.92% vs. 11.49% yields a ratio of 0.51 between Title I and Non-Title I Schools).
Rank	35th	Rank among 50 States and DC in equity between Non-Title I and Title I schools
Equity of Access by Race	$\begin{aligned} & \text { B } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$	0.91 AIAN The ratio of race access to general access in schools that identify 0.96 Black indicates whether students proportionally attend schools that 1.02 Latinx identify. Ratios close to or greater than 1.00 means good access, so 1.02 NHPI underrepresentation is not a function of lack of access.

Students Missing From Gifted Education Identification: 23\% at the Lower Boundary. Grade: Fail. Rank: 11
 Florida identified 164,884 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 50,020 to 157,125 , (23% to 49%) with most of these missing students coming from Title I schools and from underserved populations. For example, 15,264 Black children are identified, with 27,075 to 56,798 (64% to 79%) missing. These numbers are detailed in Table 7 in the accompanying state report.

[^12]
GEORGIA (GA) REPORT CARD

The state of Georgia mandates by law identifying and serving "gifted students." This mandate is fully funded.

	Opportunity to Be Identified as cifted	Grade or Rank	Notes and Explanation
	Access to Identification Rank	$\begin{gathered} \text { A } \\ \text { 1st } \end{gathered}$	95.61% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access
0 巴 U 0	Equity of Access Between Title I and Non- Title I Schools Rank	F	Students in Title I schools are identified at 42% of the rate of those in Non-Title I schools (7.37% vs. 17.49% yields a ratio of 0.42 between Title I and Non-Title I schools). Rank among 50 states and DC in equity between Non-Title I and Title I schools
	Equity of Access by Race	$\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$	1.00 AIAN The ratio of race access to general access in schools that identify 0.97 Black indicates whether students proportionally attend schools that 1.02 Latinx identify. Ratios close to or greater than 1.00 means good access, so 1.01 NHPI underrepresentation is not a function of lack of access.

[^13]```
Key Findings and Recommendations
With a fully-funded mandate, Georgia is first in access among all states, but in the bottom 10 for equity between percentages of students in Title I and Non-Title I schools who are identified for gifted services. Additional inequity exists for children of color, with low Rls across Title I and Non-Title I schools for Black and Latinx youth. With about 34,000 of nearly 600,000 Black youth identified, compared to 116,000 of about 700,000 White youth or RIs of .50 and 1.47 respectively, White youth are 3 times more likely to be identified with gifts and talents than are Black youth in the state of Georgia. This, considered with the inequity between Title I and Non-Title I schools, clearly indicates that Georgia needs to reform its policies and procedures to address racial and poverty equity issues in identification and subsequent programming.
```

[^14]
## HAWAII (HI) REPORT CARD

$\int_{3}$ The state of Hawaii mandates by law identifying and serving "gifted and talented students." This mandate is partially funded.

|  | Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Access to Identification Rank | $\begin{gathered} \text { D } \\ \text { 30th } \end{gathered}$ | 63.78\% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |  |
| $\begin{aligned} & \text { e } \\ & \text { S } \\ & \text { U } \\ & \text { U } \end{aligned}$ | Equity of Access <br> Between Title I and Non- <br> Title I Schools <br> Rank | A | Students in (5.13\% vs. 3. states with Rank among | schools are identified at 141\% of the rate of those in Non-Title I schools ields a ratio of 1.41 between Title I and Non-Title I schools). HI is 1 of only 4 tio greater than 1.00 . ates and DC in equity between Non-Title I and Title I Schools |
|  | Equity of Access by Race | $\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { B } \\ & \text { C } \end{aligned}$ | 1.12 AIAN <br> 1.13 Black <br> 0.93 Latinx <br> 0.88 NHPI | The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access. |



[^15]
#### Abstract

Key Findings and Recommendations Despite a mandate to identify and serve gifted students, only about 64\% of students in Hawaii have access to identification, and these students come from disproportionally more Non-Title I schools than they do from Title I schools, meaning that students who live in poverty are less likely to have access to gifted identification. However, for those Title I schools that do identify students with gifts and talents, they do so at a greater rate than their Non-Title I counterparts. Still, underrepresentation of NHPI exists across all schools and settings, with similar patterns for Black and Latinx youth. Clearly, Hawaii needs to examine policies and procedures to address access, equity, and identification within their gifted education programming.


Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## IDAHO (ID) REPORT CARD

The state of Idaho mandates by law identifying and serving "gifted/talented children." This mandate is partially funded.


| Underserved Groups (in schools that identify) | Category | Statewide Grade-RI | City Grade-RI | Suburb Grade-RI | Town Crade-RI | Rural Grade-RI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AIAN Equity | Overall | F-0.44 | F-0.31 | F-0.64 | F-0.22 | F-0.46 |
| ( $n=2,337$ ) | Non-Title I | F-0.32 | F-0.18 | F-0.75 | F-0.00 | F-0.00 |
| Substantial population | Title I | F-0.47 | F-0.37 | F-0.61 | F-0.23 | F-0.46 |
| Black Equity | Overall | F-0.45 | F-0.42 | F-0.45 | F-0.63 | F-0.13 |
| Z $(n=1,580)$ | Non-Title I | F-0.55 | F-0.50 | F-0.54 | A-0.95 | F-0.00 |
| 앖 | Title I | F-0.43 | F-0.41 | F-0.42 | F-0.62 | F-0.14 |
| Latinx Equity | Overall | F-0.35 | F-0.28 | F-0.43 | F-0.32 | F-0.41 |
| ( $n=27,318$ ) | Non-Title I | F-0.42 | F-0.39 | F-0.68 | F-0.20 | F-0.69 |
|  | Title I | F-0.35 | F-0.27 | F-0.39 | F-0.34 | F-0.41 |
| NHPI Equity | Overall | F-0.39 | C-0.87 | F-0.26 | F-0.20 | F-0.00 |
| ( $n=493$ ) | Non-Title I | F-0.42 | F-0.74 | F-0.00 | F-0.00 | F-0.00 |
|  | Title I | F-0.39 | A-0.96 | F-0.33 | F-0.22 | F-0.00 |

[^16]
#### Abstract

Key Findings and Recommendations Despite a mandate to identify and serve students with gifts and talents, only slightly more than half of Idaho's students have access to gifted identification, inequity exists between Non-Title I and Title I schools regarding percentage of students identified, and RIs by race and locale show underrepresentation. Idaho's largest underserved racial population is Latinx youth, with an overall RI of 0.35 and a range across school types and Locales of 0.20 to 0.68 . In addition, AIAN and Black youth are underserved, with only 48 and 33 students identified from these populations. These data make it clear that Idaho needs to reform policy and procedures concerning access, equity, and identification in gifted education, statewide.


Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

The state of Illinois mandates by law gifted education, but not identifying or serving, "gifted and talented children and youth." This mandate is not funded.


|  | Underserved Groups (in schools that identify) | Category | Statewide <br> Crade-RI | City Crade-RI | Suburb Grade-RI | Town Grade-R1 | Rural Grade-RII |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AIAN Equity | Overall | F-0.51 | F-0.61 | F-0.49 | D-0.84 | F-0.11 |
|  | ( $n=1,779$ ) | Non-Title I | F-0.42 | F-0.59 | F-0.35 | F-0.00 | F-0.00 |
|  | Substantial population | Title I | F-0.54 | F-0.66 | F-0.52 | C-0.88 | F-0.15 |
|  | Black Equity | Overall | F-0.70 | F-0.73 | F-0.69 | F-0.37 | F-0.47 |
|  | ( $n=65,898$ ) | Non-Title I | A-1.14 | A-1.30 | F-0.75 | F-0.00 | F-0.50 |
|  |  | Title I | F-0.64 | F-0.62 | F-0.71 | F-0.37 | F-0.42 |
|  | Latinx Equity | Overall | F-0.66 | F-0.70 | F-0.68 | F-0.29 | F-0.31 |
|  | ( $n=120,038$ ) | Non-Title I | F-0.50 | F-0.50 | F-0.47 | F-0.00 | F-0.61 |
|  |  | Title I | F-0.72 | C-0.89 | F-0.72 | F-0.29 | F-0.25 |
|  | NHPI Equity | Overall | A-0.97 | A-1.05 | B-0.93 | F-0.34 | F-0.62 |
|  | ( $n=689$ ) | Non-Title I | A-1.47 | A-1.60 | A-1.06 |  | F-0.00 |
|  | Substantial population | Title I | F-0.74 | F-0.52 | B-0.90 | F-0.34 | A-1.58 |

[^17][^18]| Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |
| :---: | :---: | :---: |
| Access to Identification Rank | $\begin{gathered} \text { B } \\ \text { 16th } \end{gathered}$ | 84.53\% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |
| Equity of Access <br> Between Title I and Non- <br> Title I Schools <br> Rank | F 31st | Students in Title I school are identified at $58 \%$ of the rate of those in Non-Title I schools ( $12.48 \%$ vs. $21.42 \%$ yields a ratio of 0.58 between Title I and Non-Title I schools). <br> Rank among 50 states and DC in equity between Non-Title I and Title I schools |
| Equity of Access by Race | $\begin{aligned} & \text { A } \\ & \mathbf{C} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$ | 1.01 AIAN The ratio of race access to general access in schools that identify <br> 0.87 Black indicates whether students proportionally attend schools that <br> 1.00 Latinx identify. Ratios close to or greater than 1.00 means good access, so <br> 1.01 NHPI underrepresentation is not a function of lack of access. |



[^19]
#### Abstract

Key Findings and Recommendations Even with a mandate to identify and serve, $15 \%$ of the children attending approximately $20 \%$ of the schools in Indiana have no opportunity for identification. Black youth disproportionately attend these schools. In schools where identification occurs, a large percentage of students are identified, especially in Non-Title I schools. With a ratio of 0.58 of identification in Title I to Non-Title I schools, underrepresentation is exacerbated in Title I schools. Black and Latinx youth are woefully underidentified in Indiana. These data make it clear that policy and practice reforms are needed to address identification, access, and equity across Indiana's gifted education programming.


Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## IOWA (IA) REPORT CARD

3 The state of lowa mandates by law identifying and serving "gifted and talented children." This mandate is fully funded.

|  | Opportunity to Be Identified as cifted | Grade or Rank | Notes and Explanation |
| :---: | :---: | :---: | :---: |
|  | Access to Identification Rank | $\begin{gathered} \text { A } \\ \text { 2nd } \end{gathered}$ | $93.90 \%$ of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |
| 0 巴 U 0 | Equity of Access <br> Between Title I and Non- <br> Title I Schools <br> Rank | F | Students in Title I schools are identified at $68 \%$ of the rate of those in Non-Title I schools ( $8.09 \%$ vs. $11.87 \%$ yields a ratio of 0.68 between Title I and Non-Title I schools). <br> Rank among 50 states and DC in equity between Non-Title I and Title I schools |
|  | Equity of Access by Race | $\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$ | 0.98 AIAN The ratio of race access to general access in schools that identify <br> 0.98 Black indicates whether students proportionally attend schools that <br> 0.99 Latinx identify. Ratios close to or greater than 1.00 means good access, so <br> 0.99 NHPI underrepresentation is not a function of lack of access. |



[^20]
#### Abstract

Key Findings and Recommendations With a mandate and full funding for identification and services, lowa ranks second nationally in access to identification with $94 \%$ of its students attending schools that identify students with gifts and talents. lowa also ranks second in missingness. However, disparity between Title I and NonTitle I schools in identification rates exists with a ratio of 0.68. Further all "Brown" children (AIAN, Black, Latinx, NHPI, and to some extent TMR) in lowa face underrepresentation in identification and this underrepresentation is not due to lack of access. It is clear that lowa needs to review its policies, examine its identification procedures and its equity, and reform its gifted education programs to be much more inclusive and equitable.


Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## KANSAS (KS) REPORT CARD

$\sum_{3}^{\infty}$ The state of Kansas mandates by law identifying, but not serving "gifted students." This mandate is partially funded.



## Students Missing From Gifted Education Identification: 25\% at the Lower Boundary. Grade: Fail. Rank: 14

Kansas identified 12,643 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 4,145 to $7,940,(25 \%$ to $39 \%)$ with most of these missing students coming from Title I schools and from underserved populations. For example, 294 Black children were identified, with 772 to 1,159 ( $72 \%$ to $80 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

## Key Findings and Recommendations

Although it has a law mandating identification of students with gifts and talents, Kansas identifies relatively few students and even fewer students who attend Title I schools or who are AIAN, Black, or Latinx. Another area of inequity in Kansas is the disproportionate number of Title I schools that do not identify any students with gifts and talents, a rate approximately one-fifth that of Non-Title I schools (ratio 0.17). Taken together, these data make it clear that policy and practice reforms are needed in Kansas's gifted identification, access, and equity.
Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

3 The state of Kentucky mandates by law identifying and serving "exceptional students." This mandate is partially funded.

| Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |
| :---: | :---: | :---: |
| Access to Identification Rank | $\begin{gathered} \text { A } \\ 6 \text { th } \end{gathered}$ | $92.97 \%$ of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |
| Equity of Access <br> Between Title I and Non- <br> Title I Schools <br> Rank | 14th | Students in Title I schools are identified at $78 \%$ of the rate of those in Non-Title I schools ( $14.48 \%$ vs. $18.54 \%$ yields a ratio of 0.78 between Title I and Non-Title I schools). <br> Rank among 50 states and DC in equity between Non-Title I and Title I schools |
| Equity of Access by Race | $\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { B } \\ & \text { A } \\ & \hline \end{aligned}$ | 0.97 AIAN The ratio of race access to general access in schools that identify <br> 0.90 Black indicates whether students proportionally attend schools that <br> 0.90 Latinx identify. Ratios close to or greater than 1.00 means good access, so <br> 1.01 NHPI underrepresentation is not a function of lack of access. |



[^21]
## Key Findings and Recommendations

Kentucky has good access to gifted identification overall, with about $93 \%$ of students having the opportunity for identification. Still slightly fewer (10\%) Black and
Latinx students attend schools that do identify, which partially explains their missingness in the state of Kentucky. Further, although there is a difference between Title I and Non-Title I school identification rates with a ratio of 0.78 , this equity measure is improving and much better than most other states. With small populations of NHPI and AIAN, a focus on the underrepresentation of Black and Latinx students is warranted. With only 3,632 Black students identified and between 7,173 and 9,870 missing and an overall RI of .41, equity is a serious issue in Kentucky. With an RI of . $43,2,418$ identified and the number of students missing between 3,670 and 5,190, equity is a serious issue for Latinx students as well. Clearly, considered together, these data make it clear that policy and practice reforms are needed in Kentucky's gifted identification and equity.
Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents.
AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander
Gentry, M., Gray, A., Whiting, G. W., Maeda, Y., \& Pereira, N. (2019). Access denied/System failure: Gifted education in the United States: Laws, access, equity, and missingness across the country by locale, Title I school status, and race. Report Cards, Technical Report, and Website. Purdue University: West Lafayette, IN; Jack Kent Cooke Foundation: Lansdowne, VA.

## LOUISIANA (LA) REPORT CARD

The state of Louisiana mandates by law identifying and serving "gifted youth." This mandate is partially funded.



[^22]Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## MAINE (ME) REPORT CARD

$\sum_{3}$ The state of Maine mandates by law identifying and serving "gifted and talented children." This mandate is partially funded.


| Underserved Groups (in schools that identify) | Category | Statewide Grade-RI | $\begin{gathered} \text { City } \\ \text { Grade-RI } \end{gathered}$ | Suburb Grade-RI | Town Grade-RI | Rural Grade-RI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AIAN Equity | Overall | F-0.47 | F-0.63 | F-0.70 | F-0.62 | F-0.31 |
| ( $n=850$ ) | Non-Title I | F-0.55 | F-0.00 | F-0.52 | F-0.00 | D-0.83 |
|  | Title I | F-0.47 | F-0.70 | F-0.78 | F-0.63 | F-0.26 |
| Black Equity | Overall | F-0.40 | F-0.39 | F-0.17 | D-0.82 | F-0.47 |
| 》( $n=5,469$ ) | Non-Title I | F-0.37 | F-0.55 | F-0.16 | F-0.53 | F-0.57 |
| 흥 | Title I | F-0.40 | F-0.38 | F-0.18 | D-0.84 | F-0.45 |
| Latinx Equity | Overall | F-0.56 | F-0.56 | F-0.46 | F-0.39 | F-0.70 |
| ( $n=2,817$ ) | Non-Title I | F-0.23 | F-0.32 | F-0.12 | F-0.00 | F-0.44 |
|  | Title I | F-0.60 | F-0.57 | F-0.59 | F-0.41 | F-0.74 |
| NHPI Equity | Overall | D-0.84 | F-0.00 | A-0.98 | F-0.00 | A-1.17 |
| ( $n=141$ ) | Non-Title I | F-0.00 | F-0.00 | F-0.00 |  | F-0.00 |
|  | Title I | A-1.04 | F-0.00 | A-1.95 | F-0.00 | A-1.27 |

[^23]
#### Abstract

Key Findings and Recommendations With about 160,000 of its almost 178,000 school children identified as White, Maine lacks diversity in general. With a mandate for identification, and only $79.64 \%$ of its children attending schools that identify, lack of access is a problem in Maine, especially for AIAN students who attend these schools at a lower rate than students of other races. Title I schools identify proportionally fewer students than do Non-Title I schools, adding to existing racial underrepresentation of AIAN, Black, and Latinx students. Missingness exists for all racial groups and disproportionately so for AIAN, Black, and Latinx students. Maine needs to examine access and equity in gifted education.


Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## MARYLAND (MD) REPORT CARD

3 The state of Maryland mandates by law identifying and serving "gifted and talented students." This mandate is not funded.

|  | Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Access to Identification Rank | $\begin{gathered} D \\ \text { 27th } \end{gathered}$ | 69.46\% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |  |
| $\begin{aligned} & \text { e } \\ & \text { S } \\ & \text { U } \\ & 4 \end{aligned}$ | Equity of Access Between Title I and NonTitle I Schools Rank | F 27th | Students in <br> (18.70\% vs <br> Rank amon | schools are identified at 62\% of the rate of those in Non-Title I schools yields a ratio of 0.62 between Title I and Non-Title I schools). <br> ates and DC in equity between Non-Title I and Title I schools |
|  | Equity of Access by Race | $\begin{aligned} & \text { A } \\ & \text { A } \\ & \mathbf{A} \\ & \mathbf{C} \end{aligned}$ | 0.96 AIAN <br> 0.96 Black <br> 1.15 Latinx <br> 0.88 NHPI | The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access. |



[^24]Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

# MASSACHUSETTS (MA) REPORT CARD 

3 In the state of Massachusetts, no mandate or funding exists to identify or serve "academically advanced students." In fact, so few students are identified, data are insufficient for equity investigation.

## Opportunity to Be <br> Identified as Gifted

Access to Identification
Rank
Equity of Access
Between Title I and
Non-Title I Schools
Rank
Equity of Access by
Race

| $\geq$ | Underserved Groups (in schools that identify) | Category | Statewide <br> Grade-RI | City <br> Grade-R | Suburb <br> Grade-RI | Town Grade-RI | Rural Grade-Ril |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 판 | It is impossible to create meaningful RI for these comparisons due to low numbers of students identified. |  |  |  |  |  |  |

## Students Missing From Gifted Education Identification: 93\% at the Lower Boundary. Grade: Fail. Rank: 48

In Massachusetts fewer than 5\% of students have access to identification, of these students 6,739 children were identified as gifted in 2016, at an average identification rate of $16.99 \%$. The statewide and Non-Title I school identification rates are inflated because of lack of access for more than $95 \%$ of the student population. Because of this, numbers were calculated using the national lower boundary rate of $9.57 \%$ and national upper boundary rate of $13.46 \%$. Using these rates, the number of missing students in schools that do not identify ranges from 87,405 to 122,933 ( $93 \%$ to $95 \%$ ). These numbers are detailed in Table 7 in the accompanying state report.

## Key Findings and Recommendations

Massachusetts identifies so few students with gifts and talents, the only conclusions that can be drawn with certainty are: (1) access to being identified in Massachusetts is extremely limited, as more than $95 \%$ of students attend schools where no children with gifts and talents are identified; and (2) with only 6,739 students identified in the entire state of Massachusetts, upwards of 87,405 to 122,933 students are missing from gifted education in this state. Clearly Massachusetts needs access, followed by equity, and programming to develop the gifts and talents of its public schoolchildren.
AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## MICHIGAN (MI) REPORT CARD

3 In the state of Michigan, there is no mandate or funding for identifying and serving "gifted and/or academically talented youth."


| Underserved Groups (in schools that identify) | Category | Statewide Grade-RI | $\begin{aligned} & \text { City } \\ & \text { Grade-RI } \end{aligned}$ | Suburb Grade-RI | Town Grade-RI | $\begin{gathered} \text { Rural } \\ \text { Grade-RI } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AIAN Equity | Overall | F-0.60 | A-1.21 | F-0.51 | F-0.71 | F-0.51 |
| ( $n=1,226$ ) | Non-Title I | F-0.73 | A-1.11 | F-0.50 | B-0.92 | D-0.82 |
| Substantial population | Title I | F-0.67 | A-1.45 | F-0.62 | F-0.54 | F-0.64 |
| Black Equity | Overall | C-0.87 | A-1.11 | F-0.62 | F-0.14 | F-0.23 |
| も( $n=19,696$ ) | Non-Title I | A-1.03 | A-1.47 | F-0.53 | F-0.64 | F-0.24 |
| $\stackrel{\rightharpoonup}{3}$ | Title I | A-0.99 | A-1.13 | A-1.03 | F-0.07 | F-0.18 |
| Latinx Equity | Overall | F-0.50 | F-0.44 | F-0.54 | F-0.53 | F-0.38 |
| ( $n=9,460$ ) | Non-Title I | F-0.55 | F-0.58 | F-0.51 | F-0.46 | F-0.40 |
|  | Title I | F-0.51 | F-0.40 | F-0.68 | F-0.62 | F-0.33 |
| NHPI Equity | Overall | A-1.22 | A-1.56 | A-1.29 | A-1.01 | F-0.60 |
| ( $n=170$ ) | Non-Title I | A-1.18 | A-2.26 | D-0.82 | A-1.99 | F-0.00 |
|  | Title I | A-1.45 | A-0.99 | A-3.10 | F-0.00 | A-2.44 |

[^25][^26]Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

3 The state of Minnesota mandates by law identifying but not serving "gifted and talented students/learners." This mandate is partially funded.

|  | Opportunity to Be Identified as Gifted | Grade or Renk | Notes and Explanation |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Access to Identification Rank | $\begin{gathered} F \\ \text { 34th } \end{gathered}$ | $53.60 \%$ of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |  |
| $\begin{aligned} & \text { y } \\ & \text { en } \\ & \text { e } \\ & 4 \end{aligned}$ | Equity of Access <br> Between Title I and Non- <br> Title I Schools <br> Rank | 8th | Students in (13.91\% vs. <br> Rank amon | schools are identified at $90 \%$ of the rate of those in Non-Title I schools yields a ratio of 0.90 between Title I and Non-Title I schools) <br> ates and DC in equity between Non-Title I and Title I schools |
|  | Equity of Access by Race | $\begin{aligned} & F \\ & \text { A } \\ & \text { A } \\ & \text { F } \end{aligned}$ | 0.56 AIAN <br> 1.27 Black <br> 1.13 Latinx <br> 0.62 NHPI | The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access. |


| $\begin{aligned} & \geq \\ & \stackrel{\rightharpoonup}{3} \\ & \text { B } \end{aligned}$ | Underserved Groups (in schools that identify) | Category | Statewide Grade-RI | City Grade-RI | Suburb Grade-RI | Town Grade-R1 | Rural Grade-RI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AIAN Equity | Overall | F-0.61 | F-0.63 | F-0.54 | F-0.31 | F-0.51 |
|  | ( $n=4,648$ ) | Non-Title I | F-0.48 | F-0.41 | F-0.59 | F-0.52 | F-0.13 |
|  | Substantial population | Title I | F-0.70 | F-0.62 | F-0.46 | F-0.05 | C-0.86 |
|  | Black Equity | Overall | F-0.62 | F-0.56 | F-0.58 | F-0.34 | F-0.74 |
|  | ( $n=62,402$ ) | Non-Title I | F-0.52 | F-0.32 | F-0.61 | F-0.20 | F-0.76 |
|  |  | Title I | F-0.70 | F-0.58 | F-0.58 | F-0.46 | F-0.49 |
|  | Latinx Equity | Overall | F-0.64 | F-0.79 | F-0.50 | F-0.36 | F-0.71 |
|  | ( $n=46,209$ ) | Non-Title I | F-0.51 | F-0.48 | F-0.54 | F-0.36 | F-0.57 |
|  |  | Title I | F-0.76 | D-0.82 | F-0.52 | F-0.41 | A-1.01 |
|  | NHPI Equity | Overall | F-0.66 | A-0.95 | F-0.53 | F-0.00 | F-0.79 |
|  | ( $n=308$ ) | Non-Title I | F-0.68 | A-0.95 | F-0.61 | F-0.00 | D-0.81 |
|  |  | Title I | F-0.63 | A-1.04 | F-0.43 | F-0.00 | F-0.00 |

[^27]Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## MISSISSIPPI (MS) REPORT CARD

The state of Mississippi mandates by law identifying and serving "gifted children." This mandate is partially funded.

|  | Opportunity to Be Identified as cifted | Grade or Rank | Notes and Explanation |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Access to Identification Rank | $\begin{gathered} \text { C } \\ \text { 24th } \end{gathered}$ | $71.57 \%$ of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |  |
| $\begin{aligned} & \text { e } \\ & \text { d } \\ & \text { U } \\ & 0 \end{aligned}$ | Equity of Access Between Title I and NonTitle I Schools Rank | F | Students in (8.79\% vs. <br> Rank amon | schools are identified at $72 \%$ of the rate of those in Non-Title I schools yields a ratio of 0.72 between Title I and Non-Title I schools). <br> tates and DC in equity between Non-Title I and Title I schools |
|  | Equity of Access by Race | $\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$ | 1.03 AIAN <br> 0.97 Black <br> 1.09 Latinx <br> 1.04 NHPI | The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access. |



## Students Missing From Gifted Education Identification: 38\% at the Lower Boundary. Grade: Fail. Rank: 28

Mississippi identified 33,207 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 20,065 to 29,160, ( $38 \%$ to $47 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 9,592 Black children are identified, with 13,464 to 20,246 ( $58 \%$ to $68 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

## Key Findings and Recommendations

Despite mandating identification of students with gifts and talents, only $72 \%$ of students have access to identification and this access is equitable across races. However, in Mississippi, students who attend Title I schools are identified at a rate less than those who attend Non-Title I schools (0.72). White children are identified proportionally at rates more than two times that of Black students and twice that of Latinx children. In fact, Black children are so underrepresented that they comprise more than 20,000 of the 29,000 students missing as gifted. Policies and procedures need to be reviewed with an equity lens to determine why Mississippi has such inequities in its identification of children with gifts and talents.
Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## MISSOURI (MO) REPORT CARD

3 In the state of Missouri, no mandate exists to identify or serve "gifted children." Yet, there is partial funding for gifted programs.

|  | Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Access to Identification Rank | $\begin{gathered} \text { C } \\ \text { 26th } \end{gathered}$ | $70.51 \%$ of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |  |
| $\begin{aligned} & \text { en } \\ & \text { S } \\ & \text { U } \\ & \hline 4 \end{aligned}$ | Equity of Access <br> Between Title I and Non- <br> Title I Schools <br> Rank | F 22 d | Students in Title I schools are identified at $67 \%$ of the rate of those in Non-Title I schools ( $4.98 \%$ vs. $7.48 \%$ yields a ratio of 0.67 between Title I and Non-Title I schools). |  |
|  | Equity of Access by Race | $\begin{aligned} & \text { A } \\ & \text { B } \\ & \text { A } \\ & \text { A } \end{aligned}$ | 1.08 AIAN <br> 0.92 Black <br> 1.08 Latinx <br> 1.14 NHPI | The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access. |


| Underserved Groups <br> (in schools that identify) | Category | Statewide <br> Grade-RI | City <br> Grade-RI | Suburb <br> Grade-RI | Town <br> Grade-RI |
| :--- | ---: | :--- | :--- | :--- | :--- |
| AIAN Equity | Overall | F-0.72 | F-0.42 | F-0.69 | F-0.68 |
| (n=2,816) | Non-Title I | F-0.69 | F-0.49 | B-0.90 | F-1.06 |
|  | Title I | F-0.76 | F-0.45 | F-0.56 | F-0.71 |

[^28][^29][^30]
## MONTANA (MT) REPORT CARD

The state of Montana mandates by law identifying and serving "gifted and talented children." This mandate is not funded.


| Underserved Groups (in schools that identify) | Category | Statewide Grade-RI | City Grade-RI | Suburb Grade-RI | Town Crade-RI | Rural Grade-RI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AIAN Equity | Overall | F-0.55 | F-0.39 | F-0.68 | F-0.44 | A-1.07 |
| ( $n=5,055$ ) | Non-Title I | F-0.62 | F-0.69 |  | F-0.46 | F-0.00 |
| Substantial population | Title I | F-0.55 | F-0.35 | F-0.68 | F-0.45 | A-1.02 |
| Black Equity | Overall | F-0.42 | F-0.64 | F-0.00 | F-0.16 | F-0.34 |
| Z ( $n=895$ ) | Non-Title I | F-0.26 | F-0.41 |  | F-0.00 | F-0.00 |
| 응 | Title I | F-0.44 | F-0.68 | F-0.00 | F-0.19 | F-0.38 |
| Latinx Equity | Overall | F-0.41 | F-0.37 | F-0.12 | F-0.39 | F-0.64 |
| ( $n=3,406$ ) | Non-Title I | F-0.42 | F-0.37 |  | F-0.47 | F-0.73 |
|  | Title I | F-0.41 | F-0.37 | F-0.12 | F-0.38 | F-0.63 |
| NHPI Equity | Overall | F-0.68 | F-0.52 | A-2.79 | F-0.79 | F-0.64 |
| ( $n=206$ ) | Non-Title I | F-0.65 | C-0.86 |  |  | F-0.00 |
|  | Title I | F-0.69 | F-0.43 | A-2.79 | D-0.83 | F-0.68 |

[^31]Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## NEBRASKA (NE) REPORT CARD

The state of Nebraska mandates by law identifying but not serving "learners with high ability." This mandate is partially funded.



[^32]Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

|  | Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Access to Identification Rank | $\begin{gathered} \text { A } \\ \text { 9th } \end{gathered}$ | $90.29 \%$ of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |  |
| $\begin{aligned} & \text { n } \\ & \text { 山 } \\ & \text { U } \end{aligned}$ | Equity of Access <br> Between Title I and Non- <br> Title I Schools <br> Rank | F 17th | Students in Titte I schools are identified at $73 \%$ of the rate of those in Non-Titte I schools ( $5.03 \%$ vs. $6.92 \%$ yields a ratio of 0.73 between Titte I and Non-Title I schools). |  |
|  | Equity of Access by Race | $\begin{aligned} & \text { F } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$ | 0.72 AIAN <br> 1.05 Black <br> 1.04 Latinx <br> 1.03 NHPI | The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access. |



[^33][^34][^35]
## NEW HAMPSHIRE (NH) REPORT CARD

The state of New Hampshire does not mandate, nor does it fund, identifying or serving "gifted and talented students."



[^36]Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents.

## NEW JERSEY (NJ) REPORT CARD

© The state of New Jersey mandates by law identifying and serving "gifted and talented students." This mandate is not funded.

| Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |  |
| :---: | :---: | :---: | :---: |
| Access to Identification Rank | $\begin{gathered} F \\ 37 \mathrm{th} \end{gathered}$ | $50.77 \%$ of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |  |
| Equity of Access Between Title I and NonTitle I Schools Rank | B 7th | Students in Title I schools are identified at $92 \%$ of the rate of those in Non-Title I schools (11.15\% vs. 12.14\% yields a ratio of 0.92 between Title I and Non-Title I schools). |  |
| Equity of Access by Race | $\begin{aligned} & A \\ & \text { F } \\ & \text { D } \\ & \text { A } \end{aligned}$ | 1.01 AIAN <br> 0.73 Black <br> 0.82 Latinx <br> 1.10 NHPI | The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access. |



## Students Missing From Gifted Education Identification: 52\% at the Lower Boundary. Grade: Fail. Rank: 38

New Jersey identified 80,037 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 87,181 to 93,338 , ( $52 \%$ to $54 \%$ ) with some of these missing students coming from Title I schools and from underserved populations. For example, 6,263 Black children are identified, with 18,777 to $20,158(75 \%$ to $76 \%)$ missing. These numbers are detailed in Table 7 in the accompanying state report.

[^37]
## NEW MEXICO (NM) REPORT CARD

The state of New Mexico mandates by law identifying and serving "gifted children." This mandate is partially funded.

| Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |
| :---: | :---: | :---: |
| Access to Identification Rank | $\begin{gathered} \text { B } \\ \text { 14th } \end{gathered}$ | 86.31\% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |
| Equity of Access Between Title I and NonTitle I Schools | F | Students in Title I schools are identified at 41\% of the rate of those in Non-Title I schools ( $4.82 \%$ vs. $11.77 \%$ yields a ratio of 0.41 between Title I and Non-Title I schools). |
| Rank | 43rd | Rank among 50 states and DC in equity between Non-Title I and Title I schools |
| Equity of Access by Race | $\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$ | 1.03 AIAN The ratio of race access to general access in schools that identify <br> 0.99 Black indicates whether students proportionally attend schools that <br> 1.00 Latinx identify. Ratios close to or greater than 1.00 means good access, so <br> 1.04 NHPI underrepresentation is not a function of lack of access. |


| $\begin{aligned} & \text { ㄹ } \\ & \text { 울 } \end{aligned}$ | Underserved Groups (in schools that identify) | Category | Statewide Grade-RI | City Grade-R1 | Suburb <br> Grade-RI | Town Grade-RI | Rural Grade-RI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AIAN Equity | Overall | F-0.59 | F-0.40 | F-0.38 | D-0.81 | F-0.75 |
|  | ( $n=30,851$ ) | Non-Title I | F-0.36 | F-0.27 | F-0.22 | F-0.36 | F-0.56 |
|  | Substantial population | Title I | F-0.67 | F-0.45 | F-0.42 | C-0.89 | B-0.90 |
|  | Black Equity | Overall | F-0.71 | F-0.72 | F-0.72 | F-0.49 | C-0.85 |
|  | ( $n=5,677$ ) | Non-Title I | F-0.51 | F-0.59 | F-0.36 | F-0.32 | F-0.60 |
|  |  | Title I | F-0.76 | F-0.77 | D-0.81 | F-0.52 | C-0.87 |
|  | Latinx Equity | Overall | F-0.71 | F-0.70 | F-0.79 | F-0.65 | F-0.71 |
|  | ( $n=175,620$ ) | Non-Title I | F-0.69 | F-0.71 | F-0.72 | F-0.47 | F-0.74 |
|  |  | Title I | F-0.76 | F-0.74 | D-0.84 | F-0.70 | F-0.72 |
|  | NHPI Equity | Overall | A-1.19 | A-1.17 | A-0.96 | B-0.93 | A-1.65 |
|  | ( $n=437$ ) | Non-Title I | F-0.42 | F-0.44 | F-0.00 | F-0.00 | A-0.98 |
|  |  | Title I | A-1.39 | A-1.29 | A-1.22 | A-1.21 | A-1.83 |

## Students Missing From Gifted Education Identification: 28\% at the Lower Boundary. Grade: Fail. Rank: 21

New Mexico identified 16,239 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 6,211 to 23,801, (28\% to 59\%) with most of these missing students coming from Title I schools and from underserved populations. For example, 7,056 Latinx children are identified, with 4,435 to 17,333 (39\% to 71\%) missing. These numbers are detailed in Table 7 in the accompanying state report.

## Key Findings and Recommendations

Despite having a mandate to identify and serve youth with gifts and talents, approximately $14 \%$ of students have no opportunity for identification because they attend schools where no students are identified. Additionally, Non-Title I schools identify more than double the percentage of students as gifted than do Title I schools. Third, AIAN, Black, and Latinx students are consistently underrepresented in New Mexico schools. Together this means that New Mexico has access and equity problems in its approach to identifying and serving gifted children. Reforms to policy and practice are warranted.
Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## 笑 The state of New York does not mandate nor does it fund identifying or serving "gifted pupils."

| Opportunity to Be <br> Identified as Gifted | Grade or Renk | Notes and Explanation |  |
| :--- | :---: | :--- | :--- |
| Access to Identification | F | $11.38 \%$ of students attend a school that identifies students with gifts and talents <br> Rank | 45th |
| Rank among 50 states and DC in access |  |  |  |


|  | Underserved Groups (in schools that identify) | Category | Statewide Grade-RI | City Grade-RI | Suburb Grade-RI | Town Grade-R1 | Rural Grade-RI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | AIAN Equity | Overall | D-0.84 | F-0.79 | F-0.57 | B-0.92 | A-1.26 |
|  | ( $n=1,868$ ) | Non-Title I | A-1.21 | N/A |  | A-1.27 | F-0.00 |
|  | Substantial population | Title I | F-0.73 | N/A | F-0.57 | F-0.00 | A-1.27 |
|  | Black Equity | Overall | B-0.90 | D-0.81 | F-0.77 | F-0.45 | D-0.82 |
|  | ( $n=37,902$ ) | Non-Title I | F-0.40 | N/A |  | F-0.47 | F-0.37 |
|  |  | Title I | A-0.99 | N/A | F-0.77 | F-0.29 | A-1.05 |
|  | Latinx Equity | Overall | F-0.58 | F-0.53 | F-0.56 | F-0.48 | F-0.66 |
|  | ( $n=56,741$ ) | Non-Title I | F-0.47 | N/A |  | F-0.47 | F-0.33 |
|  |  | Title I | F-0.73 | N/A | F-0.56 | F-0.59 | F-0.73 |
|  | NHPI Equity | Overall | A-1.05 | C-0.87 | B-0.91 | A-1.37 | A-1.06 |
|  | ( $n=794$ ) | Non-Title I | A-1.46 | N/A |  | A-1.46 |  |
|  | Substantial population | Title I | D-0.81 | N/A | B-0.91 | F-0.00 | A-1.06 |

## Students Missing From Gifted Education Identification: 89\% at the Lower Boundary. Grade: Fail. Rank: 45

New York identified 43,802 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 260,680 to 344,888 , ( $86 \%$ to $89 \%$ ) with most of these missing students coming from schools that do not identify and from underserved populations. For example, 4,651 Latinx children are identified, with 70,802 to $94,583(94 \%$ to $95 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.


#### Abstract

Key Findings and Recommendations With no mandate or funding, New York has only a few schools ( $10 \%$ ) that identify youth with gifts and talents. Among these schools, however, there are encouraging data. First, New York, is one of only four states in which students attending Title I schools are identified at a higher rate than those in Non-Title I schools. Second, Black youth are identified proportionately in these Title I schools (0.99), but not in Non-Title I schools (0.40), and proportional identification of Black youth in any setting is rare in the United States. The same is not true for Latinx students in New York, who are underrepresented in all settings. Despite these encouraging findings, the reality is that almost $90 \%$ of the students who attend public schools in New York have no access to identification. Clearly New York needs policies, laws, and programs to reach these students and to increase access and equity for its students.


Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. Note. Only Overall RIs are provided for City schools, as $61.35 \%$ of City schools did not designate their Title I status. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## NORTH CAROLINA (NC) REPORT CARD

3 The state of North Carolina mandates by law identifying and serving "academically or intellectually gifted students." This mandate is partially funded.

| Opportunity to Be Identified as cifted | Grade or Rank | Notes and Explanation |
| :---: | :---: | :---: |
| Access to Identification Rank | $\begin{gathered} \text { A } \\ \text { 7th } \end{gathered}$ | $92.88 \%$ of students attend a school that identifies students with gifts and talents Rank among 50 states and $D C$ in access |
| Equity of Access Between Title I and NonTitle I Schools Rank | F | Students in Title I schools are identified at $47 \%$ of the rate of those in Non-Title I schools ( $9.25 \%$ vs. $19.54 \%$ yields a ratio of 0.47 between Title I and Non-Title I schools). <br> Rank among 50 states and DC in equity between Non-Title I and Title I schools |
| Equity of Access by Race | $\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$ | 0.99 AIAN The ratio of race access to general access in schools that identify <br> 0.99 Black indicates whether students proportionally attend schools that <br> 1.02 Latinx identify. Ratios close to or greater than 1.00 means good access, so <br> 0.97 NHPI underrepresentation is not a function of lack of access. |


| Underserved Groups (in schools that identify) | Category | Statewide Grade-Bl | $\begin{gathered} \text { City } \\ \text { Grade-R1 } \end{gathered}$ | Suburb Grade-RI | $\begin{aligned} & \text { Town } \\ & \text { Grade-RI } \end{aligned}$ | $\begin{gathered} \text { Rural } \\ \text { Grade-RI } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AIAN Equity | Overall | F-0.54 | F-0.61 | F-0.71 | F-0.65 | F-0.57 |
| ( $n=18,534$ ) | Non-Title I | F-0.71 | F-0.67 | F-0.79 | B-0.94 | F-0.59 |
| Substantial population | Title I | F-0.67 | F-0.62 | D-0.83 | F-0.67 | F-0.64 |
| Black Equity | Overall | F-0.40 | F-0.40 | F-0.35 | F-0.42 | F-0.41 |
| も ( $n=367,350$ ) | Non-Title I | F-0.40 | F-0.41 | F-0.38 | F-0.43 | F-0.40 |
| $\overline{3}$ | Title I | F-0.44 | F-0.46 | F-0.38 | F-0.44 | F-0.43 |
| Latinx Equity | Overall | F-0.44 | F-0.40 | F-0.39 | F-0.57 | F-0.47 |
| ( $n=240,132$ ) | Non-Title I | F-0.43 | F-0.42 | F-0.41 | F-0.50 | F-0.44 |
|  | Title I | F-0.49 | F-0.45 | F-0.47 | F-0.60 | F-0.51 |
| NHPI Equity | Overall | F-0.69 | F-0.53 | F-0.76 | F-0.63 | D-0.84 |
| ( $n=1,755$ ) | Non-Title I | F-0.69 | F-0.36 | A-1.07 | F-0.56 | F-0.63 |
| Substantial population | Title I | F-0.72 | F-0.69 | F-0.56 | F-0.60 | B-0.91 |

[^38]
## Key Findings and Recommendations

The good news is that more than $90 \%$ of North Carolina youth and more than $90 \%$ of North Carolina schools identify students for gifted education services. Additionally, any underrepresentation noted is not due to lack of access to identification either by race of type of school attended. However, despite these positive findings, disproportionality exists in North Carolina between Title I and Non-Title I schools, with Title I schools identifying less than half the percentage of students as their Non-Title I counterparts. Additionally, Black, Latinx, and to some extent AIAN children are severely underrepresented in North Carolina regardless of school type or locale. Because of this disproportionality, large numbers of these youth are missing from identification. Clearly North Carolina needs to examine policies and practices and determine which of these has impacted identification and led to inequity among races and between Title I and Non-Title I schools.

[^39] Gifted Education

## NORTH DAKOTA (ND) REPORT CARD

The state of North Dakota does not mandate identifying or serving "gifted children." Yet, there is partial funding for gifted programs.

| Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Access to Identification Rank | $\begin{gathered} F \\ 42 n d \end{gathered}$ | $29.57 \%$ of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |  |  |  |  |
| Equity of Access <br> Between Title I and Non- <br> Title I Schools <br> Rank | 16th | Students in Title I schools are identified at $75 \%$ of the rate of those in Non-Title I schools ( $7.45 \%$ vs. $10.06 \%$ yields a ratio of 0.75 between Title I and Non-Title I schools). |  |  |  |  |
| Equity of Access by Race | $\begin{aligned} & \text { A } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$ | 1.22 AIAN 1.63 Black 1.01 Latinx 1.17 NHPI | The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access. |  |  |  |
| Underserved Groups (in schools that identify) | Category | Statewide Grade-RI | $\begin{gathered} \text { City } \\ \text { Grade-RI } \end{gathered}$ | Suburb Grade-RI | $\begin{gathered} \text { Town } \\ \text { Grade-RI } \end{gathered}$ | Rural Grade-RI |
| AIAN Equity | Overall | A-1.13 | F-0.28 | F-0.26 | F-0.51 | A-1.09 |
| ( $n=3,706$ ) | Non-Title I | F-0.40 | F-0.50 | F-0.13 | F-0.55 | F-0.00 |
| Substantial population | Title I | A-1.46 | F-0.05 | F-0.36 | F-0.31 | A-1.13 |
| Black Equity | Overall | F-0.31 | F-0.26 | F-0.28 | F-0.51 | F-0.00 |
| を ( $n=2,497$ ) | Non-Title I | F-0.33 | F-0.28 | F-0.38 | F-0.55 | F-0.00 |
| \% | Title I | F-0.30 | F-0.28 | F-0.26 | F-0.49 | F-0.00 |
| Latinx Equity | Overall | F-0.38 | F-0.51 | F-0.47 | F-0.31 | F-0.35 |
| ( $n=1,403$ ) | Non-Title I | F-0.50 | F-0.68 | F-0.43 | F-0.39 | F-0.34 |
|  | Title I | F-0.31 | F-0.36 | F-0.51 | F-0.28 | F-0.35 |
| NHPI Equity | Overall | F-0.65 | D-0.82 | F-0.00 | F-0.78 | A-1.94 |
| ( $n=123$ ) | Non-Title I | F-0.48 | F-0.55 |  | F-0.00 | A-3.62 |
|  | Title I | C-0.87 | A-1.63 | F-0.00 | A-1.65 | F-0.00 |

## Students Missing From Gifted Education Identification: 71\% at the Lower Boundary. Grade: Fail. Rank: 42

North Dakota identified 2,861 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 7,062 to 8,264, (71\% to 74\%) with most of these missing students coming from Title I schools and from underserved populations. For example, 47 Latinx children are identified, with 365 to 426 ( $89 \%$ to $90 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

## Key Findings and Recommendations

Without legislation for gifted identification or services, only about 30\% of children from North Dakota even attend a school where they could be identified. Disproportionality exists between Title I and Non-Title I schools and across races concerning proportionality of students who are identified. A student who attends a Title I school in North Dakota and who is AIAN, Black, Latinx, or Two or More Races is less likely to be identified than those in Non-Title Schools and who are White or Asian. And large numbers of all children are missing from gifted identification due to lack of access. Clear policy changes are needed to give access to, and equitably identify and serve, students with gifts and talents in North Dakota.
Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## OHIO (OH) REPORT CARD

The state of Ohio mandates by law identifying and serving "gifted students." This mandate is partially funded.

| $$ | Opportunity to Be Identified as Gifted | Grade or Renk | Notes and | nation |
| :---: | :---: | :---: | :---: | :---: |
|  | Access to Identification Rank | $\begin{gathered} D \\ \text { 28th } \end{gathered}$ | 68.60\% of s <br> Rank amon | s attend ates and |
|  | Equity of Access <br> Between Title I and Non- <br> Title I Schools <br> Rank | F | Students in <br> (7.88\% vs. 1 <br> Rank amon | schools yields a r <br> ates and |
|  | Equity of Access by Race | $\begin{aligned} & \text { A } \\ & \text { D } \\ & \text { A } \\ & \text { A } \end{aligned}$ | 0.95 AIAN <br> 0.81 Black <br> 0.95 Latinx <br> 1.07 NHPI | The ratio indicate identify underre |



[^40]Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents.

[^41]
## OKLAHOMA (OK) REPORT CARD

© The state of Oklahoma mandates by law identifying and serving "gifted and talented children." This mandate is fully funded.


| Underserved Groups (in schools that identify) | Category | Statewide Grade-RI | City Grade-RI | Suburb Grade-RI | Town Grade-RI | Rural Grade-RI |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AIAN Equity | Overall | A-0.98 | A-0.99 | D-0.81 | A-0.98 | A-1.02 |
| ( $n=92,524$ ) | Non-Title I | A-0.97 | C-0.88 | C-0.87 | A-1.02 | A-0.97 |
| Substantial population | Title I | A-1.00 | A-1.01 | D-0.80 | A-0.98 | A-1.04 |
| Black Equity | Overall | F-0.54 | F-0.56 | F-0.53 | F-0.77 | F-0.54 |
| Z ( $n=58,308$ ) | Non-Title I | F-0.54 | F-0.57 | F-0.67 | F-0.68 | F-0.43 |
| 응 | Title I | F-0.55 | F-0.57 | F-0.53 | F-0.79 | F-0.56 |
| Latinx Equity | Overall | F-0.60 | F-0.64 | F-0.63 | F-0.64 | F-0.60 |
| ( $n=102,554$ ) | Non-Title I | F-0.69 | B-0.90 | F-0.67 | F-0.59 | F-0.55 |
|  | Title I | F-0.60 | F-0.64 | F-0.63 | F-0.66 | F-0.61 |
| NHPI Equity | Overall | F-0.63 | F-0.75 | B-0.93 | F-0.47 | F-0.69 |
| ( $n=2,116$ ) | Non-Title I | F-0.60 | F-0.45 | C-0.86 | A-1.17 | F-0.67 |
| Substantial population | Title I | F-0.64 | D-0.83 | A-0.98 | F-0.47 | F-0.67 |

[^42][^43][^44]
## OREGON (OR) REPORT CARD

## N The state of Oregon mandates by law identifying and serving "talented and gifted children." This mandate

 is not funded.


[^45][^46]
## PENNSYLVANIA (PA) REPORT CARD

The state of Pennsylvania mandates by law identifying and serving "gifted students." This mandate is not funded.

|  | Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Access to Identification Rank | $\begin{gathered} \text { B } \\ \text { 19th } \end{gathered}$ | 80.82\% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |  |  |  |  |
| $\begin{aligned} & \text { en } \\ & \text { U } \\ & \text { U } \\ & 4 \end{aligned}$ | Equity of Access Between Title I and NonTitle I Schools Rank | F | Students in Title I schools are identified at $63 \%$ of the rate of those in Non-Title I schools ( $3.73 \%$ vs. $5.96 \%$ yields a ratio of 0.63 between Title I and Non-Title I schools). |  |  |  |  |
|  | Equity of Access by Race | $\begin{aligned} & \text { B } \\ & \text { F } \\ & \text { C } \\ & \text { A } \end{aligned}$ | 0.94 AIAN <br> 0.59 Black <br> 0.85 Latinx <br> 1.03 NHPI | The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access. |  |  |  |
| $\begin{aligned} & \text { 를 } \\ & \text { 안 } \end{aligned}$ | Underserved Groups (in schools that identify) | Category | Statewide Grade-RI | City Grade-RI | Suburb Grade-BI | Town Grade-RI | Rural Grade-RI |
|  | AIAN Equity | Overall | F-0.57 | F-0.79 | F-0.56 | F-0.57 | F-0.50 |
|  | ( $n=2,090$ ) | Non-Title I | F-0.48 | F-0.00 | F-0.59 | F-0.00 | F-0.27 |
|  |  | Title I | F-0.62 | B-0.90 | F-0.56 | F-0.70 | F-0.59 |
|  | Black Equity | Overall | F-0.38 | F-0.57 | F-0.31 | F-0.41 | F-0.41 |
|  | ( $n=121,337$ ) | Non-Title I | F-0.35 | A-1.02 | F-0.29 | F-0.33 | F-0.44 |
|  |  | Title I | F-0.42 | F-0.58 | F-0.33 | F-0.43 | F-0.42 |
|  | Latinx Equity | Overall | F-0.37 | F-0.41 | F-0.34 | F-0.52 | F-0.41 |
|  | ( $n=122,564$ ) | Non-Title I | F-0.39 | F-0.40 | F-0.36 | F-0.78 | F-0.51 |
|  |  | Title I | F-0.39 | F-0.45 | F-0.35 | F-0.48 | F-0.39 |
|  | NHPI Equity | Overall | C-0.88 | F-0.65 | F-0.70 | A-2.83 | D-0.83 |
|  | ( $n=1,085$ ) | Non-Title I | F-0.34 | F-0.00 | F-0.32 | F-0.00 | F-0.71 |
|  |  | Title I | A-1.16 | F-0.75 | A-0.97 | A-3.29 | B-0.92 |

## Students Missing From Gifted Education Identification: 26\% at the Lower Boundary. Grade: Fail. Rank: 18

Pennsylvania identified 60,033 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 21,201 to 45,156, ( $26 \%$ to $43 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 2,014 Black children are identified, with 9,005 to 13,226 ( $82 \%$ to $87 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.


#### Abstract

Key Findings and Recommendations In Pennsylvania, $81 \%$ of all students attend a school in which they have the opportunity to be identified with gifts and talents; however, this percentage is only $59 \%$ for Black students, whose RI is 0.38 among schools that identify. At the Lower Boundary estimate, Black students are missing at more than 3 times the rate of those identified for the state as a whole. Additionally, Title I schools identify at 0.63 the rate of Non-Title I schools. Further, Latinx students are underrepresented with an RI of 0.37. Despite having a mandate to identify and serve youth with gifts and talents, inequity exists across the state in who is identified. Clearly, Pennsylvania needs to reform policy and procedures to address issues of access and equity in its gifted education programs.


Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander
Gentry, M., Gray, A., Whiting, G. W., Maeda, Y., \& Pereira, N. (2019). Access denied/System failure: Gifted education in the United States: Laws, access, equity, and missingness across the country by locale, Title I school status, and race. Report Cards, Technical Report, and Website. Purdue University: West Lafayette, IN; Jack Kent Cooke Foundation: Lansdowne, VA.

## RHODE ISLAND (RI) REPORT CARD

$\downarrow$

## The state of Rhode Island does not mandate identifying or serving, "gifted and talented students." It does,

 however, have language for local districts concerning gifted education.

## Students Missing From Gifted Education Identification: 99\% at the Lower Boundary. Grade: Fail. Rank: 50

In Rhode Island, fewer than 5\% of students have access to identification. Of these students, 148 children were identified as gifted in 2016 at an average identification rate of $9.61 \%$. Due to this very small number of students, equity calculations are not appropriate. Numbers of students missing from gifted identification in Rhode Island were calculated using the national lower boundary rate of $9.57 \%$ and upper boundary rate of $13.46 \%$. Using these rates, the number of missing students in Rhode Island is estimated to be between 13,402 and 18,902 (99\%). These numbers are detailed in Table 7 in the accompanying state report.

[^47][^48]
## SOUTH CAROLINA (SC) REPORT CARD


#### Abstract

3 The state of South Carolina mandates by law identifying and serving "gifted and talented students." This mandate is partially funded.




## Students Missing From Gifted Education Identification: 24\% at the Lower Boundary. Grade: Fail. Rank: 13

South Carolina identified 118,013 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 37,592 to 58,054 , ( $24 \%$ to $33 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 20,160 Black children are identified, with 25,055 to 38,766 ( $55 \%$ to $66 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

## Key Findings and Recommendations

With its mandate to identify and serve students with gifts and talents, more than $90 \%$ of South Carolina's students have access to gifted identification, including equitable access among racial groups. However, inequity exists between Non-Title I and Title I schools regarding percentage of students identified with one of the worst ratios in the country. Rls by race and locale show underrepresentation, especially of Black and Latinx youth who are both identified at about half an equitable rate. These data make it clear that South Carolina needs to reform policy and procedures concerning access, equity, and identification in gifted education statewide.
AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## SOUTH DAKOTA (SD) REPORT CARD

The state of South Dakota does not mandate or fund identifying and serving "gifted and talented children."

| Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Access to Identification Rank | $\begin{gathered} F \\ 43 \mathrm{rd} \end{gathered}$ | 28.94\% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |  |  |  |  |
| Equity of Access Between Title I and NonTitle I Schools Rank | F | Students in Title I schools are identified at $57 \%$ of the rate of those in Non-Title I schools ( $4.97 \%$ vs. $8.75 \%$ yields a ratio of 0.57 between Title I and Non-Title I schools) |  |  |  |  |
| Equity of Access by Race | $\begin{aligned} & F \\ & A \\ & A \\ & \text { F } \end{aligned}$ | 0.72 AIAN <br> 2.28 Black <br> 1.32 Latinx <br> 0.68 NHPI | The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access. |  |  |  |
| Underserved Groups (in schools that identify) | Category | Statewide <br> Grade-RI | City <br> Grade-RI | Suburb <br> Grade-RI | Town Grade-RI | Rural Grade-R |
| AIAN Equity | Overall | F-0.26 | F-0.17 | Note. SD has no Suburb schools that identify. | F-0.08 | F-0.33 |
| ( $n=3,207$ ) | Non-Title I | F-0.30 | F-0.26 |  | F-0.33 | A-1.50 |
| Substantial population | Title I | F-0.32 | F-0.00 |  | F-0.06 | F-0.53 |
| Black Equity | Overall | F-0.18 | F-0.17 |  | F-0.16 | F-0.51 |
| ( $n=2,593$ ) | Non-Title I | F-0.17 | F-0.17 |  | F-0.00 | F-0.69 |
|  | Title I | F-0.20 | F-0.43 |  | F-0.21 | F-0.64 |
| Latinx Equity | Overall | F-0.21 | F-0.22 |  | F-0.29 | F-0.19 |
| ( $n=2,650$ ) | Non-Title I | F-0.27 | F-0.28 |  | F-0.45 | F-0.33 |
|  | Title I | F-0.17 | F-0.33 |  | F-0.25 | F-0.18 |
| NHPI Equity | Overall | F-0.00 | F-0.00 |  | F-0.00 | F-0.00 |
| ( $n=24$ ) | Non-Title I | F-0.00 | F-0.00 |  |  |  |
|  | Title I | F-0.00 | F-0.00 |  | F-0.00 | F-0.00 |

## Students Missing From Gifted Education Identification: 73\% at the Lower Boundary. Grade: Fail. Rank: 43

South Dakota identified 2,683 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 7,084 to 9,321 , ( $73 \%$ to $78 \%$ ) with most of these missing students coming from Title I schools and from schools that do not identify. For example, 56 AIAN children are identified, with 983 to 1,287 ( $95 \%$ to $96 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

## Key Findings and Recommendations

With no mandate in South Dakota, only 29\% of students attend schools that identify youth with gifts and talents-and AIAN youth are $25 \%$ less likely than others to attend these schools. Although the numbers of AIAN (4th largest population by proportion and 11th largest by number of students), Black, and Latinx youth are not large, their underrepresentation in South Dakota is. The average RI for AIAN youth is 0.26 ; for Black youth is 0.18 ; and for Latinx youth is 0.21 , some of the lowest RIs in the country. These youth are only identified at rates of one-fourth to less than one-fifth of an equitable rate. Finally, the disparity between Non-Title I and Title I identification rates (0.57) is large and contributes to underidentification of students who attend Title I schools. South Dakota needs to develop policies and procedures that promote access and equity within gifted education identification and programming-especially for its AIAN youth.
Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## TENNESSEE (TN) REPORT CARD

3 The state of Tennessee mandates by law identifying and serving "intellectually gifted" youth. This mandate is partially funded.

| Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |
| :---: | :---: | :---: |
| Access to Identification Rank | $\begin{gathered} \mathrm{F} \\ 33 \mathrm{rd} \end{gathered}$ | 54.03\% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |
| Equity of Access <br> Between Title I and Non- <br> Title I Schools | F | Students in Title I schools are identified at $39 \%$ of the rate of those in Non-Title I schools ( $2.20 \%$ vs. $5.66 \%$ yields a ratio of 0.39 between Title I and Non-Title I schools) |
| Rank | 45th | Rank among 50 states and DC in equity between Non-Title I and Title I schools |
| Equity of Access by Race | $\begin{aligned} & \mathrm{A} \\ & \mathrm{D} \\ & \mathrm{~A} \\ & \mathrm{~A} \end{aligned}$ | 1.03 AIAN The ratio of race access to general access in schools that identify <br> 0.83 Black indicates whether students proportionally attend schools that identify. <br> 1.02 Latinx Ratios close to or greater than 1.00 means good access; meaning <br> 1.13 NHPI underrepresentation is not a function of lack of access. |



[^49]Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## TEXAS (TX) REPORT CARD

3 The state of Texas mandates by law identifying and serving "gifted and talented students." This mandate is partially funded.

| Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |
| :---: | :---: | :---: |
| Access to Identification Rank | $\begin{aligned} & \text { A } \\ & \text { 4th } \end{aligned}$ | $93.24 \%$ of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |
| Equity of Access <br> Between Title I and Non- <br> Title I Schools <br> Rank | F 30th | Students in Title I schools are identified at $60 \%$ of the rate of those in Non-Title I schools ( $7.24 \%$ vs. $12.10 \%$ yields a ratio of 0.60 between Title I and Non-Title I schools) <br> Rank among 50 states and DC in equity between Non-Title I and Title I schools |
| Equity of Access by Race | $\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$ | 0.99 AIAN The ratio of race access to general access in schools that identify <br> 0.99 Black indicates whether students proportionally attend schools that <br> 0.99 Latinx identify. Ratios close to or greater than 1.00 means good access, so <br> 1.02 NHPI underrepresentation is not a function of lack of access. |



## Students Missing From Gifted Education Identification: 19\% at the Lower Boundary. Grade: Pass. Rank: 5

Texas identified 404,721 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 95,324 to $252,170,(19 \%$ to $38 \%)$ with most of these missing students coming from Title I schools and from underserved populations. For example, 25,881 Black children were identified, with 28,542 to 54,571 ( $52 \%$ to $68 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.


#### Abstract

Key Findings and Recommendations With a mandate to identify and serve students with gifts and talents, since 2000, approximately $94 \%$ of students in Texas attend schools that identify students with gifts and talents. However, inequity exists between Non-Title I and Title I schools regarding percentage of students identified; and RIs by race and locale show underrepresentation, especially for Black youth. Latinx students who attend Title I schools are reasonably well represented (0.90), but Title I schools in Texas identify fewer students with gifts and talents than do Non-Title I schools, where Latinx students remain underrepresented (0.59). Representation of AIAN and NHPI at 0.71 and 0.72 on average are better than in most states in the country, but still "failing" and reflecting underrepresentation. Thus, Texas needs to review policy and procedures to continue to improve equity and access for its underserved youth. This should include identification procedures, because in Texas underrepresentation is not largely due to access, but rather to underidentification in schools that do identify.


AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## UTAH (UT) REPORT CARD

3 The state of Utah does not mandate by law identifying and serving "gifted and talented/accelerated students." However, gifted programming is partially funded.



[^50]Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents.

[^51]

|  | Underserved Groups (in schools that identify) | Category | Statewide <br> Grade-RI | $\begin{gathered} \text { City } \\ \text { Grade-RI } \end{gathered}$ | Suburb Grade-RI | $\begin{gathered} \text { Town } \\ \text { Grade-RI } \end{gathered}$ | $\begin{gathered} \text { Rural } \\ \text { Grade-RI } \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | It is impossible to create meaningful RI for these comparisons due to low numbers of students identified. |  |  |  |  |  |  |

## Students Missing From Gifted Education Identification: 98\% at the Lower Boundary. Grade: Fail. Rank: 49

In Vermont, fewer than 5\% of students have access to identification, of these students 121 children were identified as gifted in 2016 at an average identification rate of $6.15 \%$. Missing students were calculated using the national lower boundary rate of $9.57 \%$ and upper boundary $13.46 \%$. Using these rates, the number of missing students in schools that do not identify ranges from 7,821 to 11,044 (98\% to 99\%). These numbers are detailed in Table 7 in the accompanying state report.

[^52][^53]

|  | Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Access to Identification Rank | $\begin{aligned} & \text { A } \\ & \text { 5th } \end{aligned}$ | 93.08\% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |  |
| $\begin{aligned} & \text { e } \\ & \text { 己 } \\ & \text { U } \\ & 4 \end{aligned}$ | Equity of Access <br> Between Title I and Non- <br> Title I Schools <br> Rank | F | Students in Title I school are identified at 45\% of the rate of those in Non-Title I schools ( $7.24 \%$ vs. $15.98 \%$ yields a ratio of 0.45 between Title I and Non-Title I schools) |  |
|  | Equity of Access by Race | $\begin{aligned} & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \\ & \mathbf{A} \end{aligned}$ | 1.01 AIAN <br> 1.00 Black <br> 0.98 Latinx <br> 1.00 NHPI | The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access. |



[^54][^55]The state of Washington mandates identifying and serving "highly capable students." This mandate is partially funded.


| Underserved Groups (in schools that identify) | Category | Statewide <br> Grade-RI | City Grade-R | Suburb Grade-RI | Town Grade-RI | Rural Grade-Ril |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AIAN Equity | Overall | F-0.41 | F-0.36 | F-0.50 | F-0.43 | F-0.49 |
| ( $n=9,255$ ) | Non-Title I | F-0.39 | F-0.35 | F-0.57 | F-0.42 | F-0.51 |
| Substantial population | Title I | F-0.41 | F-0.37 | F-0.47 | F-0.44 | F-0.48 |
| Black Equity | Overall | F-0.39 | F-0.23 | F-0.57 | F-0.69 | F-0.42 |
| \#( $n=34,521$ ) | Non-Title I | F-0.36 | F-0.21 | F-0.53 | A-1.03 | F-0.61 |
| $\overline{0}$ | Title I | F-0.41 | F-0.24 | F-0.58 | F-0.55 | F-0.37 |
| Latinx Equity | Overall | F-0.39 | F-0.35 | F-0.47 | F-0.34 | F-0.41 |
| ( $n=179,689$ ) | Non-Title I | F-0.40 | F-0.36 | F-0.46 | F-0.47 | F-0.44 |
|  | Title I | F-0.39 | F-0.35 | F-0.48 | F-0.30 | F-0.40 |
| NHPI Equity | Overall | F-0.37 | F-0.14 | F-0.51 | A-1.23 | F-0.34 |
| ( $n=8,414$ ) | Non-Title I | F-0.30 | F-0.12 | F-0.45 | A-0.96 | F-0.00 |
| Substantial population | Title I | F-0.40 | F-0.16 | F-0.53 | A-1.44 | F-0.48 |

[^56]Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## The state of West Virginia mandates by law identifying and serving "gifted students." This mandate is partially funded.



[^57][^58]

The state of Wisconsin mandates by law identifying and serving "gifted and talented pupils." This mandate is partially funded.

|  | Opportunity to Be Identified as Cifted | Grade or Rank | Notes and Explanation |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Access to Identification Rank | $\begin{gathered} \text { D } \\ \text { 32nd } \end{gathered}$ | $60.90 \%$ of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |  |
| ACCESS | Equity of Access <br> Between Title I and Non- <br> Title I Schools <br> Rank | 11th | Students in <br> (7.84\% vs. <br> Rank amon | schools are identified at $83 \%$ of the rate of those in Non-Title I schools yields a ratio 0.83 ratio between Title I and Non-Title I schools) <br> ates and DC in equity between Non-Title I and Title I schools |
|  | Equity of Access by Race | $\begin{aligned} & \text { F } \\ & \text { A } \\ & \text { A } \\ & \text { A } \end{aligned}$ | 0.66 AIAN <br> 1.17 Black <br> 1.10 Latinx <br> 0.96 NHPI | The ratio of race access to general access in schools that identify indicates whether students proportionally attend schools that identify. Ratios close to or greater than 1.00 means good access, so underrepresentation is not a function of lack of access. |


| Underserved Groups (in schools that identify) | Category | Statewide Grade-RI | City Grade-RI | Suburb Grade-RI | Town Grade-RI | Rural Grade-R1 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AIAN Equity | Overall | F-0.49 | F-0.55 | F-0.57 | F-0.34 | F-0.70 |
| ( $n=4,192$ ) | Non-Title I | F-0.36 | F-0.23 | F-0.75 | F-0.16 | F-0.48 |
| Substantial population | Title I | F-0.59 | C-0.85 | F-0.43 | F-0.52 | D-0.82 |
| Black Equity | Overall | F-0.55 | F-0.63 | F-0.53 | F-0.43 | F-0.33 |
| $\geq$ ( $n=58,166$ ) | Non-Title I | F-0.38 | F-0.34 | F-0.46 | F-0.43 | F-0.29 |
| $2$ | Title I | F-0.64 | F-0.73 | F-0.59 | F-0.47 | F-0.38 |
| Latinx Equity | Overall | F-0.64 | F-0.61 | A-0.97 | F-0.36 | F-0.43 |
| ( $n=65,876$ ) | Non-Title I | F-0.60 | F-0.46 | B-0.91 | F-0.48 | F-0.46 |
|  | Title I | F-0.69 | F-0.71 | A-1.00 | F-0.34 | F-0.43 |
| NHPI Equity | Overall | F-0.54 | D-0.81 | F-0.51 | F-0.39 | F-0.18 |
| ( $n=435$ ) | Non-Title I | F-0.72 | F-0.76 | D-0.84 | F-0.50 | F-0.40 |
|  | Title I | F-0.40 | C-0.86 | F-0.14 | F-0.38 | F-0.00 |

[^59]
#### Abstract

Key Findings and Recommendations Despite a mandate requiring identification of youth with gifts and talents, only about 61\% of Wisconsin's youth attend schools that do so. And, $34 \%$ fewer AIAN youth attend these schools than do students from other races. Additionally, fewer students are identified in Title I than in NonTitle I schools. Together these circumstances result in severe underrepresentation of AIAN youth. Underrepresentation of Black and Latinx youth in Wisconsin also exists across both school types and in most locales with failing overall RIs of 0.55 and 0.64 , respectively. Clearly, reform is needed in Wisconsin concerning access to and equity in gifted education. Policy, practices, and identification procedures need review and revision.


Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

## WYOMING (WY) REPORT CARD

$\sum_{3}^{\infty}$ The state of Wyoming does not mandate by law identifying or serving "gifted and talented children and youth." Gifted programs are partially funded.

| Opportunity to Be Identified as Gifted | Grade or Rank | Notes and Explanation |
| :---: | :---: | :---: |
| Access to Identification Rank | $\begin{gathered} F \\ \text { 38th } \end{gathered}$ | 49.99\% of students attend a school that identifies students with gifts and talents Rank among 50 states and DC in access |
| Equity of Access <br> Between Title I and Non- <br> Title I Schools <br> Rank | F 15th | Students in Title I schools are identified at $77 \%$ of the rate of those in Non-Title I schools ( $6.52 \%$ vs. $8.51 \%$ yields a ratio of 0.77 between Title I and Non-Title I schools) <br> Rank among 50 states and DC in equity between Non-Title I and Title I schools |
| Equity of Access by Race | $\begin{aligned} & \text { D } \\ & \text { B } \\ & \text { B } \end{aligned}$ | 0.41 AIAN The ratio of race access to general access in schools that identify <br> 0.84 Black indicates whether students proportionally attend schools that <br> 0.90 Latinx identify. Ratios close to or greater than 1.00 means good access, so <br> 0.92 NHPI underrepresentation is not a function of lack of access. |



## Students Missing From Gifted Education Identification: 52\% at the Lower Boundary. Grade: Fail. Rank: 37

Wyoming identified 3,676 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 3,999 to 4,409, ( $52 \%$ to $55 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 172 Latinx children are identified, with 819 to 915 ( $83 \%$ to $84 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.


#### Abstract

Key Findings and Recommendations With no mandate to identify and serve students with gifts and talents, only half of Wyoming's students have access to gifted identification, inequity exists between Non-Title I and Title I schools regarding percentage of students identified, and RIs by race and locale show underrepresentation. Wyoming's largest underserved racial population is Latinx youth with an overall RI of 0.38 . In addition, AIAN and Black youth are underserved with only 62 and 21 students identified from these populations. Of concern are AIAN youth, Wyoming has the 8th largest proportion of AIAN of all the states and this group of students is underidentified with less access to schools that do identify in Wyoming. Access is also a problem for Black, Latinx, and TMR students. These data make it clear that Wyoming needs to develop policies and procedures concerning access, equity, and identification in gifted education statewide.


Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander by locale, Title I school status, and race. Report Cards, Technical Report, and Website. Purdue University: West Lafayette, IN; Jack Kent Cooke Foundation: Lansdowne, VA.

# SYNTHESIS OF STATE REPORT CARDS AND DATA ACROSS THE NATION, 50 STATES, AND THE DISTRICT OF COLUMBIA 

## Laws

## Key Findings

- Thirty-eight states have a mandate regarding identification and/or services of students with gifts and talents.
- Only four states fully fund their mandate-Florida, Georgia, Iowa, and Oklahoma, with Florida and Oklahoma showing promise in some areas of equity
- Having a mandate is related to favorable access and fewer missing students; however this alone does not translate to equitable identification.

Laws about gifted education vary widely across the country from no law to funded mandates for identification and services. Table 1 summarized the variety of legislation by state current as of 2015-2016, which reflects the data in this report. Findings about legislation include: Thirty-eight states have mandates for gifted education; only four states fully fund a mandate for identification and services (FL, GA, IA, OK). In contrast, Illinois has a mandate, but does not fund, nor does it require identification or services. Three states require identification but not services (AK, CT, NJ) without funding. Four partially fund and require identification but not services (KS, ME, MN, NE). Twenty states partially fund required identification and services; whereas, six states require identification and services but provide no funding. Eleven states have language concerning gifted education but no laws (CA, MA, MI, MO, ND, NH, NY, RI, UT, VT, WY), and of these, Missouri, North Dakota, Utah, and Wyoming have partial funding for gifted education even in absence of a mandate. Only the District of Columbia and South Dakota have no mandate, no language, and no funding for gifted education, and not surprisingly, they are on the bottom of most of the analyses in this report. Finally, four states (CA, MA, MI, SD) have no mandate. Of the states without mandates, only California engages in much identification, with
$67 \%$ of its students attending schools that identify students with gifts and talents. A summary of mandates, funding, identification, and services across all states are shown in Table 2. It seems clear that having a mandate and funding increases access in most states, although students in 11 states with mandates have less access than the national average (67\%). These states include Hawaii (64\%), Arizona (63\%), Wisconsin (61\%), Tennessee (54\%), Minnesota (54\%), Montana (53\%), Idaho (52\%), New Jersey (51\%), Delaware (33\%), Connecticut (33\%), and Illinois (26\%). Having a law is not related to trends in equity, though it is related to students having opportunity for identification, which is the first step toward equity.
tAble 2
Breakdown of State Mandates for Gifted Education, Identification, Services, and Funding

|  | Mandated | Mandated Identification | Mandated Services | Funded Mandate |
| :---: | :---: | :---: | :---: | :---: |
| State | 38 Yes 13 No | 37 Yes <br> 14 No | 30 Yes 21 No | 4 Fully 28 Partially 19 No |
| Alaska | Yes | Yes | No | No |
| Alabama | Yes | Yes | Yes | Partially |
| Arkansas | Yes | Yes | Yes | Partially |
| Arizona | Yes | Yes | Yes | No |
| California | No | No | No | No |
| Colorado | Yes | Yes | Yes | Partially |
| Connecticut | Yes | Yes | No | No |
| District of Columbia | No | No | No | No |
| Delaware | Yes | Yes | Yes | No |
| Florida | Yes | Yes | Yes | Fully |
| Georgia | Yes | Yes | Yes | Fully |
| Hawaii | Yes | Yes | Yes | Partially |
| Iowa | Yes | Yes | Yes | Fully |
| Idaho | Yes | Yes | Yes | Partially |
| Illinois | Yes | No | No | No |
| Indiana | Yes | Yes | Yes | Partially |
| Kansas | Yes | Yes | No | Partially |
| Kentucky | Yes | Yes | Yes | Partially |
| Louisiana | Yes | Yes | Yes | Partially |
| Massachusetts | No | No | No | No |
| Maryland | Yes | Yes | Yes | No |


|  | Mandated | Mandated Identification | Mandated Services | Funded Mandate |
| :---: | :---: | :---: | :---: | :---: |
| State | $\begin{aligned} & 38 \mathrm{Yes} \\ & 13 \mathrm{No} \\ & \hline \end{aligned}$ | $\begin{aligned} & 37 \mathrm{Yes} \\ & 14 \mathrm{No} \end{aligned}$ | $\begin{aligned} & 30 \text { Yes } \\ & 21 \text { No } \end{aligned}$ | $\qquad$ |
| Maine | Yes | Yes | No | Partially |
| Michigan | No | No | No | No |
| Minnesota | Yes | Yes | No | Partially |
| Missouri | No | No | No | Partially |
| Mississippi | Yes | Yes | Yes | Partially |
| Montana | Yes | Yes | Yes | No |
| North Carolina | Yes | Yes | Yes | Partially |
| North Dakota | No | No | No | Partially |
| Nebraska | Yes | Yes | No | Partially |
| New Hampshire | No | No | No | No |
| New Jersey | Yes | Yes | No | No |
| New Mexico | Yes | Yes | Yes | Partially |
| Nevada | Yes | Yes | Yes | Partially |
| New York | No | No | No | No |
| Ohio | Yes | Yes | Yes | Partially |
| Oklahoma | Yes | Yes | Yes | Fully |
| Oregon | Yes | Yes | Yes | No |
| Pennsylvania | Yes | Yes | Yes | No |
| Rhode Island | No | No | No | No |
| South Carolina | Yes | Yes | Yes | Partially |
| South Dakota | No | No | No | No |
| Tennessee | Yes | Yes | Yes | Partially |
| Texas | Yes | Yes | Yes | Partially |
| Utah | No | No | No | Partially |
| Virginia | Yes | Yes | Yes | Partially |
| Vermont | No | No | No | No |
| Washington | Yes | Yes | Yes | Partially |
| Wisconsin | Yes | Yes | Yes | Partially |
| West Virginia | Yes | Yes | Yes | Partially |
| Wyoming | No | No | No | Partially |

## Access ${ }^{1}$

## Key Findings

- Nationally $67 \%$ of students attending $58 \%$ of the schools had access to identification in 2015-2016.
- Access among states ranged from 0\% in the District of Columbia to $95.61 \%$ in Georgia.
- Thirty-two states have passing grades for access $60 \%$ or more students attending schools that identify students with gifts and talents.
- In general, more Title I schools than Non-Title I schools identify students with gifts and talents; however, in most states ( $N=42$ ) fewer students are identified in Title I than Non-Title I schools (nationally this is $7.86 \%$ vs. $13.46 \%$ ).
- Access does not guarantee equity by race, all racial groups except for AIAN have equal access for identification and across all locales equal access to identification exists.

Access is the first essential condition for students to be equitably served in gifted education. Without access, first by attending a school that actually identifies students with gifts and talents and second by equity in access across subgroups, it is impossible for equity in identification to exist. Thus, nationally and for each state we examined access by calculating the percentage of students who attend schools that identify students with gifts and talents (Figure 2), then we examined equity among subgroups.

In total, 32 states have passing grades for the percentage of students enrolled in schools that identify students with gifts and talents. The grading system assigns a letter grade to a range of percentages of students who attend schools with identification within a state. The grades and ranges are: A, $90.00 \%$ to $100 \%$; B, $80.00 \%$ to $89.99 \% ;$ C, $70.00 \%$ to $79.99 \% ;$ D, $60.00 \%$ to $69.99 \%$; and $F$, less than $60.00 \%$. In 2015-2016, the actual range of percentage of students enrolled in schools that identify follow for each grade assigned: A, $90.11 \%$ to $95.61 \% ; \mathrm{B}, 80.82 \%$ to $88.55 \%$; C, $70.51 \%$ to $79.64 \%$; D, $60.90 \%$ to $69.46 \%$; F, $0.00 \%$ to $54.03 \%$.

It is noteworthy that in 30 of the 32 states with passing access grades, those with greater than $60 \%$ of students with access to identification have state mandates regarding identification and/or services for students with gifts and talents. Eleven of the 19 states with failing grades do not have mandates. These data make it clear that having a mandate means that access is more likely but does not guarantee that students in these states with mandates have the opportunity for identification. Even in states that received A's in access, all of which have mandates, up to $10 \%$ of students attend schools that do not identify any students with gifts and talents.

1 Additional supporting data on Access, as referenced in the National Report Card narrative, are contained in Appendices A-F.

STATE GRADES AND PERCENTAGES OF STUDENTS WITH ACCESS TO IDENTIFICATION


FIG URE 2. 2015-2016 State Grade and Status by Access of Opportunity to Be Identified With Range of Percent of Students in Schools With Identification and Range of Percent of Students Identified

Note. States in bold typeface have mandates regarding the identification and/or service of students with gifts and talents.
Note. In District of Columbia, no students are identified with gifts and talents.
Note. In the states of Massachusetts, Vermont, and Rhode Island, fewer than 5\% of students attend schools that identify, thus in this report we omit these states from many of the analyses.

## Percentages of Students Identified

## Key Findings

- Among schools that identify students with gifts and talents, $9.57 \%$ of students were identified nationally in 2015-2016
- Maryland has the largest percentage of students identified at $24.37 \%$ and the District of Columbia identified no students
- Among schools that identify, Twenty-four states identified between $5.00 \%$ and $9.99 \%$ of their students

The percentage of students identified with gifts and talents varies widely among the states (Figure 3). Nationally, $9.57 \%$ of students who attend schools that identify are identified with gifts and talents. But state by state this percentage ranges from 0\% in the District of Columbia,
to $24.37 \%$ in Maryland. As shown in Figure 3, most states $(N=24)$ identify between $5.00 \%$ and $9.99 \%$ of their students with gifts and talents (among schools that identify these youth). Maryland and South Carolina identify large percentages of students with gifts and talents at $24.37 \%$ and $17.09 \%$ respectively. Seven states identify fewer than $5 \%$ of their students, and each of these states has a mandate (WV, TN KS PA, HI, ID, LA).


F/GURE 3. Variations Among Percentage of Identified Students in States in 2015-2016
Note. States in bold have mandates regarding the identification and service of students with gifts and talents.

## Identification Rates and Title I Status

## Key Findings

- Nationally, students in Title I schools were $42 \%$ less likely to be identified with gifts and talents then their peers in Non-Title I schools in 2015-2016.
- Students in Title I schools in 13 states were $0 \%-20 \%$ less likely to be identified as Non-Title I peers.
- Students in Title I schools in 34 states were $22 \%$ - $66 \%$ less likely to be identified as Non-Title I peers.
- Nationally, underrepresentation is not a function of proportionally fewer Title I schools identifying students with gifts and talents

To gain a more nuanced understanding of how poverty affects identification, we examined percentages of students identified in Title I and Non-Title I schools to determine whether equity existed between these two settings, first nationally and then by state. As shown in Table 3, by considering whether students attend a Title I or Non-Title I school, a disturbing trend emerges from the national data. With an average of $9.57 \%$ of students identified in schools that identify nationally, each year, a larger percentage of students in Non-Title I schools are identified than in Title I schools, with the largest difference occurring in 2016 with $13.46 \%$ and $7.86 \%$ respectively, yielding a ratio of 0.58 . This means that students in Title I schools are identified at only $58 \%$ of the rate of those in Non-Title I schools. The difference between Title I and Non-Title I rates of identification has decreased since 2011-2012.

TABLE 3
Number and Percentage of Students Identified With Giftedness Overall and by Title I Status, With Difference Between Non-Title I and Title I Schools, National

|  | Total Identified GT <br> in Schools That <br> Identify | Total and <br> Percentage <br> Identified in Non- <br> Title I Schools | Total and <br> Percentage <br> Identified in Title I <br> schools | Ratio of Title I <br> to Non-Title I <br> Schools |
| :--- | :---: | :---: | :---: | :---: |
| Year | $3,255,232$ | $1,370,703$ | $1,852,729$ |  |
| $2015-2016$ | $9.57 \%$ | $13.46 \%$ | $7.86 \%$ | 0.58 |
| $2013-2014$ | $3,382,078$ | $1,325,098$ | $2,045,383$ |  |
| $2011-2012$ | $10.19 \%$ | $13,65 \%$ | $8.75 \%$ | 0.64 |
|  | $3,190,688$ | $1,890,321$ | $1,246,888$ |  |
|  | $9.61 \%$ | $12.11 \%$ | $7.29 \%$ | 0.60 |

Note. Total students identified may not equal students in Title I and Non-Title I schools because each year a few schools did not designate Title I status. Nationally, the percentage of schools that did not designate this status was 4.35\% in 2015-2016; 2.90\% in 2013-2014; and 5.84\% in 2011-2012. Appendix D contains these data for each state.

Figure 3 provides the range of percent of students identified in schools that identify by state. A closer look at the rate of identification in a state requires consideration of whether students attend a Title I or a Non-Title I school and how closely the rates of identification are aligned. To do this, a ratio between Title I and Non-Title I rates of identification is calculated. A ratio of 1.00 means there are equal rates of identification in both school types; above a 1.00 means there is a greater rate of identification in Title I schools; below a 1.00 means there is a greater rate of identification in Non-Title I schools. The grading system in Table 4 assigns a letter grade to a range of possible ratios: $A, 0.950$ and above; $B, 0.900$ to $0.949 ; C, 0.850$ to $0.899 ; D, 0.800$ to 0.849 ; and F, less than 0.800 . Only 13 states have passing ratios. This means that in 34 states students attending Title I schools are identified at rates of $34 \%$ to $78 \%$ of those
in Non-Title I schools. Further, only 4 states have ratios greater than 1.00 , meaning a larger percentage of students are identified in Title I than Non-Title I schools.


FIGURE 4. 2015-2016 State Grade and Status by Ratio of Title I to Non-Title I Rates of Identification

Note. States in bold have mandates regarding the identification and service of students with gifts and talents. Note. In the District of Columbia there is no identification of students with gifts and talents, so no ratio is calculated. Note. In the states of Massachusetts, Vermont, and Rhode Island, less than 5\% of students attend schools that identify; therefore, no ratio is calculated as the numbers are too small to make meaningful interpretations.

Table 4 provides descriptive data concerning the numbers and percentage of schools with Title I status and whether or not they identify students with gifts and talents. These data help explain whether differences exist in opportunity for identification based on what type of school (Title I or Non-Title I) a student attends. Ratios of schools that identify to schools that don't identify for each type of school (Non-Title I or Title I) greater than 1.00 would indicate a larger percentage of schools of that type identify than do not identify; ratios close to 1.00 would indicate about the same percentage of schools identify as do not identify; and ratios less than 1.00 would indicate a smaller percentage of schools identify than do not identify. The grand ratio compares the ratio of Title I to Non-Title I, with the same indicators (Ratio > 1.00 means a larger proportional representation of schools that identify within Title I schools than Non-Title I; ratio near 1.00 means about the same in percentage of schools identifying; ratio <1.00 means a greater proportional representation of schools that identify within Non-Title I schools than Title I schools). For the nation in 2016, grand ratio (1.27) indicates greater proportion for Title I schools that identify (1.59) when compared to Non-Title I schools that identify (1.25). These data support
the conclusion that underrepresentation is not a function of proportionally fewer Title I schools identifying students with gifts and talents. This has consistently been the case since 2011-2012.

## TABLE 4

Ratio of Non-Title I and Title I Schools With/Without Gifted Access With Grand Ratio of Title I Ratio to Non-Title I Ratio in the Nation

| Year | Total <br> Schools | Non-Title I <br> Schools-No ID \# and \% | Non-Title <br> I Schools- <br> With ID \# <br> and \% | Ratio Non- <br> Title I With <br> ID /Non-Title <br> INo ID | Title I <br> Schools-No ID \# and \% | Title I <br> Schools- <br> With ID \# <br> and \% | Ratio Title <br> I with ID / <br> Title INo ID | Grand Ratio <br> Title I Ratio/ <br> Non-Title I <br> Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2015-2016 | 96,360 | 11,505 | 14,435 |  | 25,595 | 40,630 |  |  |
|  |  | 11.94 | 14.98 | 1.25 | 26.56 | 42.16 | 1.59 | 1.27 |
| 2013-2014 | 95,507 | 10,574 | 13,813 |  | 27,823 | 40,529 |  |  |
|  |  | 11.07 | 14.46 | 1.31 | 29.13 | 42.44 | 1.46 | 1.12 |
| 2011-2012 | 95,635 | 16,543 | 22,424 |  | 19,080 | 32,001 |  |  |
|  |  | 17.30 | 23.45 | 1.36 | 19.95 | 33.46 | 1.68 | 1.24 |

To further understand the 2015-2016 national grand ratio and the role of state grand ratios within that, states were categorized by range of grand ratio. These categories assist in assessing whether student who attend Title I schools have equal access to identification. As described in the narrative to Table 4 above, the range Greater than 1.05 indicates that in these states a larger percentage of Title I schools identify students than Non-Title I schools. States with grand ratios in the range of 0.95 to 1.05 indicate a similar rate of identification in Title I schools as found in Non-Title I schools. As shown in Figure 5, the data for the 30 states with grand ratios in these two ranges support the conclusion that underrepresentation in these states is not a function of proportionally fewer Title I schools identifying students with gifts and talents. A grand ratio in the range of Less than 0.95 indicates that in these states a larger percentage of Non-Title I schools identify students than Title I schools. For these 17 states, the data support the conclusion that underrepresentation is a function of proportionally fewer Title I schools identifying students with gifts and talents.


FIGURE 5. 2015-2016 States Sorted by Range of Grand Ratio of Title I Ratio to Non-Title I Ratios
Note. States in bold have mandates regarding the identification and service of students with gifts and talents. Note. In the District of Columbia, there is no identification of students with gifts and talents so no grand ratio is calculated and it is not included in the table.
Note. In the states of Massachusetts, Rhode Island, and Vermont, less than 5\% of students attend schools that identify, therefore no grand ratio is calculated as the numbers are too small to make meaningful interpretations and these states are not included in the table.

## Access by Locale

## Key Findings

- Nationally, little difference exists across City, Suburb, Town, and Rural locales in access to identification
- However only eight states (FL, IA, ME, NC, OK, SC, TX, VA) have equal access across all locales.
- Less access exists for students attending Suburb schools in five states, City and Town schools in 17 states, and Rural schools in 25 states.

Using the local codes of City, Suburb, Town, and Rural, we examined access to identification by locale first nationally, depicted in Table 5, and then by state, depicted in Table 6. Locale is a combination of a school's location relative to an urban area and its population size. The school locale codes come from the Common Core of Data (CCD) public files matching the years for
the OCR data, in this case 2015-2016. CRDC provided a cross-walk, which matched the CRDC unique school identifier code with the National Center for Education Statistics (NCES) unique school identifier code. By matching school data sets, we added locale codes to the CRDC data and categorized schools, and the students who attend them, by the four main categories of City, Suburb, Town, and Rural. These categories were collapsed from 12 subcategories, with City and Suburb subcategories of large, midsize, and small; and Town and Rural subcategories of fringe, distant, and remote.

TABLE 5
2015-2016 National Access to Identification as Gifted in All Schools by Locale With a Ratio of Locale to All

|  |  | Students in Schools That Identify GT |  | Ratio of Locale |
| :--- | :---: | :---: | :---: | :---: |
| Locale | Total Students | $\mathbf{N}$ | \% |  |
| to All |  |  |  |  |

Nationally, only small differences exist in the ratio of access by locale, with students in all locales having similar access to identification with ratios between 0.95 and 1.05 . City locales are the lowest, at . 97 , meaning slightly fewer students have access to identification in cities than other locales, and students in Rural schools have the highest access at 1.04. This tight range of access ratios indicates that representation and identification of giftedness by locale is not due to lack of access to identification.

If one only examined the national data, one might conclude that access to identification is not affected by locale. However, examination of access by locale for individual states reveals a much more complicated story, with a wide range of access across the different states. For example, 8 states, like the nation, had ratios greater than 0.95 for all four locales (FL, IA, ME, NC, OK, SC, TX, VA) and only five states had Suburb locals with ratios less than 0.95 (AK, ID, NY, SD, WA). Seventeen states in both City and Town locales had ratios less than 0.95 respectively (City: AL, AR, CT, GA, IL, IN, KS, KY, LA, MD, MI, NH, NJ, NY, OH, PA, TN; Town: AZ, CA, CT, DE, IL, MD, MN, $M S, N E, N H, N J, N M, N V, S D, U T, W I, W V)$. Of concern is that students attending rural schools in 25 states had less than equitable access to identification with ratios below 0.95 (AK, $\mathrm{AZ}, \mathrm{CA}, \mathrm{CO}$, CT, DE, ID, IL, HI, MD, MI, MN, MO, MT, ND, NE, NH, NV, NY, OR, SD, UT, WI, WV, WY). Table 6 contains the summary of these states and access by locale. Complete data are contained in Appendix G.

TABLE 6
2015-2016 Access to Identification as Gifted by State by Locale, With Ratios for Locales in Which Access is Limited

| All Locales $>0.95$ | $\begin{gathered} \text { City } \\ <0.95 \end{gathered}$ | Suburb $<0.95$ | Town $<0.95$ | Rural $<0.95$ |
| :---: | :---: | :---: | :---: | :---: |
| FL | AL-0.85 | AK-0.87 | AZ-0.59 | AK-0.52 |
| IA | AR-0.92 | ID-0.94 | CA-0.65 | AZ-0.84 |
| ME | CT-0.92 | NY-0.81 | CT-0.45 | CA-0.78 |
| NC | GA-0.93 | SD-0.00 | DE-0.90 | C0-0.94 |
| OK | IL-0.79 | WA-0.93 | IL-0.43 | CT-0.77 |
| SC | $\mathrm{IN}-0.92$ |  | MD-0.85 | DE-0.40 |
| TX | KS-0.94 |  | MN-0.58 | ID-0.85 |
| VA | KY-0.76 |  | MS-0.89 | IL-0.50 |
|  | LA-0.92 |  | NE-0.94 | H1-0.78 |
|  | MD-0.71 |  | NH-0.44 | MD-0.87 |
|  | MI-0.75 |  | $\mathrm{NJ}-0.85$ | MI-0.70 |
|  | NH-0.04 |  | NM-0.89 | MN-0.50 |
|  | NJ-0.53 |  | NV-0.51 | M0-0.80 |
|  | NY-0.88 |  | SD-0.93 | MT-0.56 |
|  | OH-0.82 |  | UT-0.82 | ND-0.31 |
|  | PA-0.48 |  | WI-0.86 | NE-0.76 |
|  | TN-0.90 |  | WV-0.94 | NH-0.83 |
|  |  |  |  | NV-0.72 |
|  |  |  |  | NY-0.59 |
|  |  |  |  | OR-0.91 |
|  |  |  |  | SD-0.43 |
|  |  |  |  | UT-0.82 |
|  |  |  |  | WI-0.65 |
|  |  |  |  | WV-0.87 |
|  |  |  |  | WY-0.90 |
| $N=8$ | $N=17$ | $N=5$ | $N=17$ | $N=25$ |

Note. In the District of Columbia there is no identification of students with gifts and talents, so no ratio is calculated. Note. In the states of Massachusetts, Vermont, and Rhode Island, less than 5\% of students attend schools that identify; therefore, no ratio is calculated as the numbers are too small to make meaningful interpretations.

## Access by Race

## Key Findings

- In general, lack of access to identification does not explain inequity and missingness in the United States. In fact access is only a limitation as follows:
- Nationally, of all racial groups only AIAN students have less access to identification at .92 that of other groups.
- Twelve states have failing grades in access for AIAN youth, five of which have the largest proportions AIAN students.
- Six states have failing grades in access for Black students.
- Asian, Latinx, NHPI, TMR, and White students had failing access grades in 1, 2, 3, 2 , and 0 states, respectively

Finally, we examined access by racial groups to determine whether different groups had similar access to identification. To do this, we divided the percentage of the group who attend schools that identify by the overall percentage of students who attend these schools, yielding an access ratio. As with differences between Title I and Non-Title I schools, we assigned a letter grade to a range of possible ratios as follows for each racial group: $A, 0.950$ and above; $B, 0.900$ to $0.949 ; C, 0.850$ to $0.899 ; D, 0.800$ to 0.849 ; and F, less than 0.800 . Nationally, only AIAN youth have slightly less access to identification at 0.92 than do other racial groups. These results are contained in Table 7.
table 7
2015-2016 National Access to Identification as Gifted in All
Schools and by Race With a Ratio of Race to All

|  |  | Students in Schools That ID GT |  | Ratio of |  |
| :--- | :---: | ---: | :---: | :---: | :---: |
| Race | Total Students | $\mathbf{N}$ | $\%$ |  | Race to All | Grade

Similar to other access categories, access by race varies widely among different states. Although nationally, it appears that access is generally even across the races, many states have limited access to different racial groups. Table 8 contains access ratios for each racial group with failing ratios in red and passing ratios in green.

With a few exceptions, access to identification is not a problem for racial groups in most states, meaning most racial groups in most states have the opportunity for identification at similar rates. With 47 states included in these analyses, access for AIAN students received passing grades in 35 , with 30 states receiving a grade of A. However, for AIAN youth, another 12 states received failing grades for access, and among these are states such as Alaska, Montana, Minnesota, Arizona, and South Dakota who have large proportions of AIAN youth in their states. Other races including Asian, Latinx, NHPI, TMR, and White students saw passing grades in 46, $45,44,45$, and 47 states, respectively. Like AIAN students, Black youth had less access with 41 states receiving passing grades and 6 states receiving failing grades. Interestingly, New York and New Hampshire, though they have limited access for all students at $9.93 \%$ and $7.87 \%$, fail in access for Black and Latinx youth.

## Conclusions About Access

## Key Findings

- In 32 states fewer than $80 \%$ of students had access to identification, in 19 of these fewer than $55 \%$ of students had access.
- Students in Title I schools are more likely to attend a school with identification than students who attend Non-Title I schools but less likely to be identified.
- Schools in Suburb locales have the best access to identification of all locales.
- Underrepresentation, missingness, and inequity are largely not due to lack of access across races.

In 32 states, fewer than $80 \%$ of students have access to identification. In more than half of these ( 19 states), fewer than $55 \%$ of students have access to identification. Of the students with access to identification, they are more likely to be identified if they attend a Non-Title I school. In only 5 states do Title I schools identify a greater percentage of students with gifts and talents than do Non-Title I schools. In fact, in 38 states Title I students are identified at less than $80 \%$ of the rate of Non-Title I students. Yet, in 30 states, a student who attends a Title I school is more likely, and in 6 states equally as likely, to be attending a school where they have access to identification than if they attend a Non-Title I school. But in general, a smaller percent of students in Title I schools are identified.

At the national level, access by locale is relatively equitable, yet at the state level locale affects whether students have access to identification, with students in rural locales in 25 states having less access to identification than other students in the state. This is the case for students

TABLE 8
Student Access to Identification, Ratio of Race Access to All Access by State in 2015-2016

| State | Ratio of AIAN Access to All Access | Ratio of Asian Access to All Access | Ratio of Black Access to All Access | Ratio of Latinx Access to All Access | Ratio of NHPI Access to All Access | Ratio of TMR Access to All Access | Ratio of White Access to All Access |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Nation | 0.92 | 0.98 | 0.97 | 1.05 | 0.97 | 1.04 | 0.98 |
| AK | 0.47 | 1.20 | 1.26 | 1.24 | 1.25 | 1.21 | 1.12 |
| AL | 1.10 | 0.74 | 0.99 | 1.00 | 1.00 | 0.97 | 1.01 |
| AR | 0.98 | 0.97 | 0.98 | 0.98 | 0.89 | 0.99 | 1.01 |
| AZ | 0.68 | 0.84 | 1.06 | 1.07 | 1.07 | 1.03 | 0.96 |
| CA | 0.77 | 1.01 | 1.01 | 1.03 | 0.99 | 0.98 | 0.93 |
| CO | 0.99 | 1.03 | 1.00 | 0.98 | 1.00 | 1.01 | 1.01 |
| CT | 0.75 | 1.14 | 0.98 | 0.94 | 0.85 | 0.98 | 1.02 |
| DE | 1.11 | 1.19 | 0.96 | 1.17 | 0.42 | 1.36 | 0.93 |
| FL | 0.91 | 1.02 | 0.96 | 1.02 | 1.02 | 1.00 | 1.01 |
| GA | 1.00 | 1.03 | 0.97 | 1.02 | 1.01 | 1.01 | 1.02 |
| HI | 1.12 | 1.09 | 1.13 | 0.93 | 0.88 | 0.96 | 1.15 |
| IA | 0.98 | 1.00 | 0.98 | 0.99 | 0.99 | 0.99 | 1.00 |
| ID | 1.05 | 1.00 | 0.96 | 1.03 | 0.92 | 1.05 | 0.99 |
| IL | 1.19 | 1.71 | 0.73 | 0.90 | 1.21 | 1.19 | 1.06 |
| IN | 1.01 | 1.07 | 0.87 | 1.00 | 1.01 | 0.99 | 1.02 |
| KS | 0.99 | 1.05 | 0.95 | 0.89 | 1.01 | 1.01 | 1.03 |
| KY | 0.97 | 0.93 | 0.90 | 0.90 | 1.01 | 0.97 | 1.02 |
| LA | 1.06 | 1.08 | 0.92 | 1.06 | 1.04 | 1.03 | 1.07 |
| MD | 0.96 | 1.25 | 0.96 | 1.15 | 0.88 | 1.02 | 0.93 |
| ME | 0.87 | 1.06 | 1.13 | 1.02 | 1.01 | 0.99 | 0.99 |
| MI | 1.09 | 1.00 | 0.69 | 0.83 | 1.16 | 1.05 | 1.10 |
| MN | 0.56 | 1.34 | 1.27 | 1.13 | 0.62 | 1.14 | 0.92 |
| M0 | 1.08 | 1.14 | 0.92 | 1.08 | 1.14 | 1.16 | 1.00 |
| MS | 1.03 | 0.93 | 0.97 | 1.09 | 1.04 | 1.12 | 1.03 |
| MT | 0.54 | 1.29 | 1.25 | 1.09 | 1.11 | 1.07 | 1.06 |
| NC | 0.99 | 1.00 | 0.99 | 1.02 | 0.97 | 0.99 | 1.00 |
| ND | 1.22 | 1.66 | 1.63 | 1.01 | 1.17 | 0.81 | 0.92 |
| NE | 0.68 | 1.13 | 1.08 | 1.02 | 0.99 | 1.10 | 0.98 |
| NH | 0.75 | 0.81 | 0.52 | 0.70 | 1.09 | 1.00 | 1.04 |
| NJ | 1.01 | 1.20 | 0.73 | 0.82 | 1.10 | 1.13 | 1.14 |
| NM | 1.03 | 1.08 | 0.99 | 1.00 | 1.04 | 1.09 | 0.99 |
| NV | 0.72 | 1.04 | 1.05 | 1.04 | 1.03 | 1.03 | 0.93 |
| NY | 0.95 | 1.35 | 0.69 | 0.71 | 1.05 | 1.20 | 1.21 |
| OH | 0.95 | 1.14 | 0.81 | 0.95 | 1.07 | 0.99 | 1.04 |
| OK | 0.99 | 1.03 | 1.02 | 1.01 | 1.01 | 1.00 | 1.00 |
| OR | 0.96 | 1.13 | 1.09 | 0.95 | 0.89 | 1.02 | 1.01 |
| PA | 0.94 | 0.94 | 0.59 | 0.85 | 1.03 | 0.88 | 1.12 |
| SC | 0.99 | 1.03 | 0.98 | 1.01 | 1.00 | 1.01 | 1.01 |
| SD | 0.72 | 1.43 | 2.28 | 1.32 | 0.68 | 1.21 | 0.95 |
| TN | 1.03 | 1.25 | 0.83 | 1.02 | 1.13 | 1.06 | 1.05 |
| TX | 0.99 | 1.03 | 0.99 | 0.99 | 1.02 | 1.01 | 1.02 |
| UT | 0.82 | 1.40 | 1.33 | 1.13 | 1.31 | 0.74 | 0.96 |
| VA | 1.01 | 0.93 | 1.00 | 0.98 | 1.00 | 1.01 | 1.01 |
| WA | 0.90 | 0.98 | 0.99 | 1.01 | 1.02 | 0.99 | 1.00 |
| WI | 0.66 | 1.17 | 1.17 | 1.10 | 0.96 | 1.06 | 0.96 |
| WV | 1.02 | 1.09 | 0.99 | 0.99 | 1.04 | 1.08 | 1.00 |
| WY | 0.41 | 0.93 | 0.84 | 0.90 | 0.92 | 0.79 | 1.05 |

Note. In the District of Columbia there is no identification of students with gifts and talents, so no ratio is calculated.
Note. In the states of Massachusetts, Vermont, and Rhode Island, less than 5\% of students attend schools that identify; therefore, no ratio is calculated as the numbers are too small to make meaningful interpretations.
Note. States in bold have mandates regarding the identification and service of students with gifts and talents.
in town and city locales in 17 states each. The best locale for access to identification is Suburb, with only 5 states with access ratios less than 0.95 .

Regarding access by race, nationally only AIAN youth have access at less than 0.95 of other races. Then access varies across states; however, most states have passing access rates across all racial groups. Lack of access is most prevalent at the state level for AIAN youth with 12 states failing, this is followed by access for Black youth with 6 states failing. White youth have no states with failing access, and the other groups have 3 or fewer states with failing ratios. This means that underrepresentation, missingness, and inequity are largely not due to lack of access across races.

## Equity Across Underserved Groups and Locales ${ }^{2}$

## Key Findings

- Underrepresentation of AIAN, Black, Latinx, and NHPI students is widespread and persistent across the United States, continuing a trend of more than 40 years; whereas, Asian and White students are consistently well-represented.
- Students in Rural and Town locales are more likely to be less proportionally represented than their Suburb and City counterparts.
- Although fewer students are identified in Title I schools, in most cases, they are more proportionally identified by race in these schools.

Equity was examined for subgroups across Title I and Non-Title I schools by race and for Locales nationally and then for each state to provide a clear picture of representation and underrepresentation of students across the country identified with gifts and talents. These analyses follow those related to equity by examining representation of subgroups in schools that identify students with gifts and talents. It is important to keep in mind, as shown in Figure 2, that only 10 states provide access to identification for more than $90 \%$ of students; whereas, in 19 states, fewer than $60 \%$ of students have access to identification. Thus, in many states these equity figures simply do not include a substantial number of students.

To examine equity, we used Representation Indices (RIs), which are simple ratios of the percentage of students in subgroup in the gifted population divided by the percentage of the

2 Additional supporting data on Equity, as referenced in the National Report Card narrative, are contained in Appendices G, H, and I.
same subgroup in the general population (e.g., the percentage of gifted students who attend rural schools/the percentage of all students who attend rural schools or the percentage of Black students who are gifted/the percentage of Black students who are in the general population). An RI near 1.00 means proportional representation, and as described in our report card methods, we assigned grades to Rls to help interpret representation as follows: 0.950 and greater is an A, from 0.900 to 0.949 is a $B, 0.850$ to 0.899 is a $C, 0.800$ to 0.849 is a $D$, and less than 0.800 is failing in proportionality.

Note that the District of Columbia, Massachusetts, Rhode Island, and Vermont are not included in this section because fewer than $5 \%$ of their students have access to identification; further, although included in the analyses, fewer than 50\% of students in Utah, Delaware, Connecticut, North Dakota, South Dakota, Illinois, New York, Michigan, and New Hampshire had access to identification in 2015-2016.

## Overall, Title I, and Non-Title I by Locale

Using representation indices, we examined to what extent proportional representation among students across locales (i.e., City, Suburb, Town, Rural) exists. We began with the Nation, overall, then added the Title I status, and then repeated these analyses for each state. The results are in Table 9. As with other analyses, we consider Rls at or above 0.95 equitable, and those less than 0.80 failing. Failing RIs are not equally distributed across locales. With 47 states and three RIs for each locale, 141 RIs exit for each locale. For Suburb locales, only 6 of these 141 RIs in 5 states ( $C O, D E, I A, L A, M N$ ) are less than 0.80 . City locales have 16 failing Rls across 11 states (AL, AZ, HI, KY, ME, ND, NY, OH, OK, SD, WY). Thirty-four failing Rls exist in Rural locales in 21 states (AK, AZ, CO, DE, FL, GA, HI, IN, KS, MD, MI, MN, MT, NM, NV, NY, OR, TN, VA, WV, WY). Town locales have the greatest number of failing Rls with 58 across 31 states (AK, AZ, CA, CO, CT, DE, FL, GA, HI, ID, IL, KS, LA, MD, MN, MO, NC, ND, NE, NJ, NV, NY, OR, PA, SC, TN, TX, UT, VA, WA, WI). Clearly students in Rural or Town locales are more likely to be less proportionally represented than their Suburb and City counterparts. Of note, only Arkansas, Mississippi, and New Hampshire have no failing locale RIs, indicating proportional representation across all locales that identify students in their states. No clear pattern exits regarding RIs and Title I status schools by locale. However, Florida has failing RIs for all Town and Rural categories; Alaska, California, Nebraska, Pennsylvania, and Washington have failing RIs for all Town categories; and Maryland and Nevada have failing RIs for all Rural categories.

TABLE 9
Locale RIs Overall and by Title I Status Across the Nation and States in 2015-2016

| State | Title Status | City | Suburb | Town | Rural |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Nation | Overall | 1.04 | 1.06 | 0.80 | 0.92 |
|  | Non-Title I | 1.08 | 1.02 | 0.76 | 0.91 |
|  | Title I | 1.05 | 1.01 | 0.90 | 0.96 |
| AK | Overall | 1.19 | 1.52 | 0.67 | 0.80 |
|  | Non-Title I | 1.19 | 1.49 | 0.61 | 1.22 |
|  | Title I | 1.25 | 1.28 | 0.72 | 0.51 |
| AL | Overall | 0.81 | 1.21 | 0.99 | 0.99 |
|  | Non-Title I | 0.96 | 1.09 | 0.94 | 0.97 |
|  | Title I | 0.77 | 1.16 | 1.06 | 1.03 |
| AR | Overall | 1.13 | 1.10 | 0.94 | 0.90 |
|  | Non-Title I | 0.99 | 1.07 | 1.22 | 0.86 |
|  | Title I | 1.15 | 1.09 | 0.93 | 0.90 |
| AZ | Overall | 1.07 | 1.01 | 0.56 | 0.93 |
|  | Non-Title I | 0.77 | 1.73 |  | 0.64 |
|  | Title I | 1.07 | 1.00 | 0.57 | 0.93 |
| CA | Overall | 1.09 | 0.96 | 0.70 | 0.87 |
|  | Non-Title I | 1.07 | 0.98 | 0.61 | 0.80 |
|  | Title I | 1.13 | 0.91 | 0.78 | 0.91 |
| CO | Overall | 1.09 | 0.97 | 0.78 | 0.95 |
|  | Non-Title I | 1.13 | 0.93 | 0.81 | 1.01 |
|  | Title I | 1.24 | 0.72 | 0.80 | 0.72 |
| CT | Overall | 1.10 | 0.95 | 0.55 | 1.15 |
|  | Non-Title I | 1.10 | 0.94 | 0.20 | 1.16 |
|  | Title I | 1.03 | 0.98 | 1.04 | 1.07 |
| DE | Overall | 1.35 | 0.95 | 0.36 | 1.51 |
|  | Non-Title I | 1.37 | 0.61 |  | 2.22 |
|  | Title I | 1.36 | 1.09 | 0.41 | 0.40 |
| FL | Overall | 1.05 | 1.08 | 0.52 | 0.68 |
|  | Non-Title I | 1.06 | 1.04 | 0.48 | 0.72 |
|  | Title I | 1.05 | 1.09 | 0.58 | 0.67 |
| GA | Overall | 1.01 | 1.14 | 0.75 | 0.85 |
|  | Non-Title I | 1.30 | 1.09 | 0.72 | 0.74 |
|  | Title I | 1.02 | 0.97 | 1.00 | 1.04 |
| HI | Overall | 0.75 | 0.93 | 1.50 | 0.74 |
|  | Non-Title I | 0.82 | 1.02 | 0.74 | 2.05 |
|  | Title I | 0.68 | 0.96 | 1.45 | 0.28 |
| IA | Overall | 1.10 | 0.78 | 0.90 | 1.07 |
|  | Non-Title I | 1.20 | 0.67 | 0.93 | 1.07 |
|  | Title I | 1.06 | 0.82 | 0.94 | 1.05 |
| ID | Overall | 1.12 | 1.11 | 0.79 | 1.00 |
|  | Non-Title I | 1.16 | 0.85 | 0.95 | 0.76 |
|  | Title I | 1.03 | 1.20 | 0.79 | 1.05 |
| IL | Overall | 1.06 | 0.97 | 1.00 | 1.08 |
|  | Non-Title I | 1.31 | 0.88 | 0.36 | 0.90 |
|  | Title I | 0.91 | 1.01 | 1.04 | 1.23 |


| State | Title Status | City | Suburb | Town | Rural |
| :---: | :---: | :---: | :---: | :---: | :---: |
| IN | Overall | 0.88 | 1.26 | 0.88 | 0.92 |
|  | Non-Title I | 1.08 | 1.17 | 0.86 | 0.74 |
|  | Title I | 0.87 | 1.17 | 0.98 | 1.01 |
| KS | Overall | 1.17 | 1.13 | 0.82 | 0.92 |
|  | Non-Title I | 1.37 | 0.96 | 0.77 | 0.78 |
|  | Title I | 1.08 | 1.09 | 0.90 | 0.99 |
| KY | Overall | 0.75 | 0.97 | 1.12 | 1.02 |
|  | Non-Title I | 0.98 | 1.03 | 1.10 | 0.86 |
|  | Title I | 0.74 | 0.89 | 1.14 | 1.04 |
| LA | Overall | 1.40 | 0.97 | 0.60 | 0.84 |
|  | Non-Title I | 1.50 | 0.67 | 0.81 | 0.86 |
|  | Title I | 1.29 | 1.06 | 0.66 | 0.84 |
| MD | Overall | 1.55 | 0.94 | 0.82 | 0.70 |
|  | Non-Title I | 1.68 | 0.92 | 1.08 | 0.67 |
|  | Title I | 1.33 | 1.00 | 0.39 | 0.55 |
| ME | Overall | 0.96 | 0.99 | 1.27 | 0.93 |
|  | Non-Title I | 0.60 | 1.06 | 0.82 | 1.13 |
|  | Title I | 1.00 | 0.93 | 1.33 | 0.91 |
| MI | Overall | 1.10 | 1.05 | 0.88 | 0.81 |
|  | Non-Title I | 1.68 | 0.99 | 0.85 | 0.76 |
|  | Title I | 1.00 | 0.97 | 1.15 | 0.86 |
| MN | Overall | 1.26 | 0.92 | 0.75 | 0.90 |
|  | Non-Title I | 1.00 | 0.99 | 0.97 | 1.07 |
|  | Title I | 1.47 | 0.70 | 0.62 | 0.68 |
| M0 | Overall | 1.10 | 1.12 | 0.76 | 0.90 |
|  | Non-Title I | 1.35 | 0.97 | 0.66 | 0.91 |
|  | Title I | 0.98 | 1.15 | 0.84 | 0.94 |
| MS | Overall | 1.06 | 1.17 | 0.86 | 1.01 |
|  | Non-Title I | 1.10 | 1.12 | 0.89 | 0.95 |
|  | Title I | 1.14 | 0.97 | 0.88 | 1.03 |
| MT | Overall | 0.94 | 0.80 | 1.02 | 1.11 |
|  | Non-Title I | 0.99 |  | 1.36 | 0.35 |
|  | Title I | 0.92 | 0.80 | 0.97 | 1.21 |
| NC | Overall | 1.08 | 1.09 | 0.79 | 0.94 |
|  | Non-Title I | 1.08 | 1.00 | 0.83 | 0.92 |
|  | Title I | 1.03 | 0.89 | 0.95 | 1.05 |
| ND | Overall | 0.77 | 2.34 | 0.65 | 1.47 |
|  | Non-Title I | 0.83 | 2.20 | 0.82 | 1.38 |
|  | Title I | 0.58 | 2.53 | 0.55 | 1.67 |
| NE | Overall | 1.09 | 1.07 | 0.70 | 1.04 |
|  | Non-Title I | 1.11 | 0.96 | 0.74 | 1.00 |
|  | Title I | 0.98 | 0.86 | 0.77 | 1.37 |
| NH | Overall | 1.96 | 1.05 | 1.10 | 0.83 |
|  | Non-Title I |  | 0.99 |  | 1.04 |
|  | Title I | 1.97 | 1.07 | 1.11 | 0.80 |
| NJ | Overall | 1.22 | 0.97 | 0.66 | 1.25 |
|  | Non-Title I | 4.69 | 0.92 | 0.94 | 2.05 |
|  | Title I | 1.12 | 0.99 | 0.65 | 1.04 |


| State | Title Status | City | Suburb | Town | Rural |
| :---: | :---: | :---: | :---: | :---: | :---: |
| NM | Overall | 1.30 | 0.90 | 0.80 | 0.80 |
|  | Non-Title I | 1.22 | 0.97 | 0.84 | 0.82 |
|  | Title I | 1.31 | 0.90 | 0.83 | 0.75 |
| NV | Overall | 1.08 | 0.94 | 0.83 | 0.72 |
|  | Non-Title I | 1.07 | 0.97 | 0.90 | 0.63 |
|  | Title I | 1.05 | 0.98 | 0.58 | 0.75 |
| NY | Overall | 1.25 | 0.93 | 0.79 | 0.61 |
|  | Non-Title I | 0.18 |  | 1.06 | 0.80 |
|  | Title I | 1.18 | 1.01 | 0.71 | 0.66 |
| OH | Overall | 0.52 | 1.14 | 0.95 | 1.07 |
|  | Non-Title I | 0.91 | 1.03 | 1.00 | 0.94 |
|  | Title I | 0.54 | 1.13 | 1.00 | 1.13 |
| OK | Overall | 0.82 | 1.21 | 1.03 | 0.97 |
|  | Non-Title I | 0.77 | 1.10 | 1.14 | 1.03 |
|  | Title I | 0.83 | 1.16 | 1.06 | 0.97 |
| OR | Overall | 1.31 | 1.13 | 0.59 | 0.64 |
|  | Non-Title I | 1.30 | 1.05 | 0.58 | 0.65 |
|  | Title I | 1.19 | 1.11 | 0.82 | 0.80 |
| PA | Overall | 0.86 | 1.16 | 0.66 | 0.81 |
|  | Non-Title I | 1.76 | 1.04 | 0.53 | 0.87 |
|  | Title I | 0.90 | 1.17 | 0.75 | 0.81 |
| SC | Overall | 1.07 | 1.13 | 0.70 | 0.91 |
|  | Non-Title I | 1.09 | 1.03 | 0.74 | 0.96 |
|  | Title I | 1.01 | 0.98 | 1.02 | 1.00 |
| SD | Overall | 0.83 |  | 1.31 | 1.08 |
|  | Non-Title I | 0.88 |  | 1.05 | 1.91 |
|  | Title I | 0.29 |  | 1.76 | 0.85 |
| TN | Overall | 1.01 | 1.57 | 0.72 | 0.78 |
|  | Non-Title I | 0.95 | 1.19 | 0.93 | 0.69 |
|  | Title I | 1.07 | 1.38 | 0.80 | 0.89 |
| TX | Overall | 1.14 | 0.97 | 0.77 | 0.85 |
|  | Non-Title I | 1.20 | 0.94 | 0.61 | 0.83 |
|  | Title I | 1.16 | 0.90 | 0.86 | 0.87 |
| UT | Overall | 0.83 | 1.06 | 0.93 | 0.92 |
|  | Non-Title I | 0.81 | 1.04 | 1.06 | 0.96 |
|  | Title I | 0.94 | 1.11 | 0.47 | 0.91 |
| VA | Overall | 1.01 | 1.19 | 0.74 | 0.73 |
|  | Non-Title I | 1.05 | 1.14 | 0.78 | 0.74 |
|  | Title I | 1.06 | 1.16 | 0.85 | 0.81 |
| WA | Overall | 1.06 | 1.11 | 0.67 | 0.82 |
|  | Non-Title I | 1.13 | 1.06 | 0.58 | 0.81 |
|  | Title I | 1.02 | 1.13 | 0.72 | 0.83 |
| WI | Overall | 0.86 | 1.25 | 0.98 | 0.85 |
|  | Non-Title I | 0.87 | 1.10 | 1.18 | 0.84 |
|  | Title I | 0.86 | 1.40 | 0.78 | 0.85 |
| WV | Overall | 1.51 | 1.03 | 0.88 | 0.79 |
|  | Non-Title I | 1.53 | 0.95 | 0.93 | 0.75 |
|  | Title I | 1.27 | 0.89 | 0.91 | 0.98 |


| State | Title Status | City | Suburb | Town | Rural |
| :--- | :--- | :--- | :---: | :---: | :---: |
| WY | Overall | 0.46 | 0.82 | 1.38 | 0.82 |
|  | Non-Title I | 0.32 |  | 1.48 | 0.96 |
|  | Title I | 1.12 | 0.98 | 1.20 | 0.64 |

Note. States in bold have mandates regarding the identification and service of students with gifts and talents. Highlighted numbers indicate failing RIs for the locale.
Note. Because fewer than $5 \%$ of their students have access to identification, the District of Columbia, Massachusetts, Rhode Island, and Vermont are not included in this table.

Additional examination of RIs across locales by race over three waves of data revealed consistent patterns of underrepresentation since 2011-2012, with Black, Latinx, and NHPI students underrepresented across all locales and AIAN students underrepresented in City and Suburb locales. In general, RIs are lower for all races, except for AIAN and Asian students in Town and Rural locales. These results are depicted in Figures 6, 7, and 8.


FIGURE 6. National Representation Indices by Locale and Race 2015-2016


F/GURE 7. National Representation Indices by Locale and Race 2013-2014


## F/GURE 8: National Representation Indices by Locale and Race 2011-2012

## Title and Non-Title by Race

## Key Findings

- Students from AIAN, Black, Latinx, and NHPI racial groups are underidentified across the country with a few exceptions
- AIAN youth have passing RI in 8 states among all schools, and 9 states among NonTitle I schools, and 9 states among Title I Schools. Most promising representation exists in North Dakota, Oklahoma, and Wyoming.
- Black youth have passing RI in 4 states among all schools, and 2 states among Non-Title I schools, and 6 states among Title I. Arkansas and Maryland show some promise in representation
- Latinx youth have passing RI in 2 states among all schools, and 2 states among Non-Title I schools, and 6 states among Title I. Florida, Texas, California, and Colorado have passing RIs for Latinx youth.
- NHPI youth have passing RI in 20 states among all schools, and 16 states among Non-Title I schools, and 20 states among Title I. Of these passing Rls, only Utah, California, Nevada, and North Dakota have significant populations of NHPI students.
- Of concern is poor RI in states with large percentages of underserved youth, for example, South Dakota and Alaska for AIAN youth; Georgia, North Carolina, Alabama, and Mississippi for Black youth; New Mexico, Arizona, and Washington for Latinx youth; and Hawaii for NHPI youth.

Using representation indices, we examined representation by Title I school status and race to determine whether different racial groups are well or underrepresented in schools that identify youth with gifts and talents. This is unique, as previous analyses included all schools in the nation or state to calculate representation indices (Ford, 2014; Peters, Gentry, Whiting, \& McBee, 2019; Yoon \& Gentry, 2009). Because we determined access and equity of access
as described above, we chose to focus on only the schools in which students are identified to examine and discuss underrepresentation. Students who attend schools that do not identify students with gifts and talents together with students who are underidentified in schools that do identify students with gifts and talents comprise what we term missing students in the next section.

Figures 9 through 15 depict summaries of RIs as graded on the state report cards for schools overall, and by Title I status. These summaries are visually shocking, as they show the stark differences between represented and underrepresented populations and the extent of underrepresentation of students who are AIAN, Black, Latinx, and NHPI contrasted with the extent of well-representation of students who are Asian and White. Among the 47 states included in these analyses, RIs for Black and Latinx youth received failing grades overall in 43 and 45 states respectively, Non-Title I in 45 states, and in Title I in 41 states. For AIAN youth, 39 states overall and 38 states in each Title I category received failing grades for equitable representation. Similarly, for NHPI youth, overall 27 states received failing RI grades, and in Non-Title I schools, 31 states received failing grades, followed by 27 failing grades in Title I schools. Contrasted with these dismal findings are the numbers of passing grades for RIs of Asian and White students with 47 of 47 states overall receiving grades of A's for each race. For Non-Title I schools, RIs for Asian and White students received a grade of A in 45 and 46 states, respectively. Title I schools in 46 states received A's for representation. In all, for these two races only Montana and North Dakota received failing grades for Rls below 0.80 for Asian students. Finally, results were somewhat mixed for students identified as Two or More Races, with A's awarded for equity Overall, Non-Title I, and Title I schools in 20, 22, and 21 states, respectively, and F's for the same categories in 13,15 , and 18 states.

To dive a little deeper into these findings, we examined the states that contain the largest proportion of AIAN, Black, Latinx, and NHPI students among schools that identify students, because it could be argued that it matters more in states where larger proportions of students exist. The top 10 states in terms of percentage of the population attending schools that identify students were identified for each of the underserved racial groups. For indigenous youth, North Dakota, Wyoming, and Oklahoma received A's for proportional representation of AIAN youth and Utah, California, and Nevada received passing grades (B, C, D, respectively) for proportional representation. Other states received F's. Consistent with the large number of F's for Black and Latinx proportionality, the top 10 states received F's except for Florida and Texas, which received a C and a D, respectively, for their RIs for Latinx youth. These states are denoted in bold typeface in Figures 9 through 15.

Although we recognize that intersectionality is an issue, we did not calculate Rls across Title status, Locale, and Race due to small cell sizes which make RIs unstable (Hulley, Cummings \& Browner, 2013).


FIGURE 9. AIAN Youth Representation Indices (RIs) in All, Non-Title I, and Title I Schools by State in 2015-2016
Note. Bold typeface denotes the 10 states with the largest percentage of AIAN youth attending school that identify students with gifts and talents.
Note. Because fewer than $5 \%$ of their students have access to identification, the District of Columbia, Massachusetts, Rhode Island, and Vermont are not included in this table.


ASIAN IN NON-TITLE I SCHOOLS


FIGURE 10, Asian Youth Representation Indices (RIs) in All, Non-Title I, and Title ISchools by State in 2015-2016
Note. Bold typeface denotes the 10 states with the largest percentage of Latinx youth attending school that identify students with gifts and talents.
Note. Because fewer than $5 \%$ of their students have access to identification, the District of Columbia, Massachusetts, Rhode Island, and Vermont are not included in this table.

BLACK IN ALL SCHOOLS


BLACK IN NON-TITLE I SCHOOLS


FIG URE 11. Black Youth Representation Indices (RIs) in All, Non-Title I, and Title I Schools by State in 2015-2016
Note. Bold typeface denotes the 10 states with the largest percentage of Black youth attending school that identify students with gifts and talents.
Note. Because fewer than $5 \%$ of their students have access to identification, the District of Columbia, Massachusetts, Rhode Island, and Vermont are not included in this table.

LATINX IN ALL SCHOOLS


LATINX IN NON-TITLE I SCHOOLS


LATINX IN TITLE I SCHOOLS


FIGURE 12. Latinx Youth Representation Indices (RIs) in All, Non-Title I, and Title I Schools by State in 2015-2016
Note. Bold typeface denotes the 10 states with the largest percentage of Latinx youth attending school that identify students with gifts and talents.
Note. Because fewer than $5 \%$ of their students have access to identification, the District of Columbia, Massachusetts, Rhode Island, and Vermont are not included in this table.


FIGURE 13. NHPI Youth Representation Indices (RIs) in All, Non-Title I, and Title I Schools by State in 2015-2016
Note. Bold typeface denotes the 10 states with the largest percentage of NHPI youth attending school that identify students with gifts and talents.
Note. Because fewer than $5 \%$ of their students have access to identification, the District of Columbia, Massachusetts, Rhode Island, and Vermont are not included in this table.

TMR IN ALL SCHOOLS


TMR IN NON TITLE-I SCHOOLS


F/GURE 14. TMR Youth Representation Indices (RIs) in All, Non-Title I, and Title I Schools by State in 2015-2016
Note. Bold typeface denotes the 10 states with the largest percentage of TMR youth attending school that identify students with gifts and talents.
Note. Because fewer than $5 \%$ of their students have access to identification, the District of Columbia, Massachusetts, Rhode Island, and Vermont are not included in this table.


FIGURE 15. White Youth Representation Indices (RIs) in All, Non-Title I, and Title I Schools by State in 2015-2016
Note. Bold typeface denotes the 10 states with the largest percentage of White youth attending school that identify students with gifts and talents.
Note. Because fewer than 5\% of their students have access to identification, the District of Columbia, Massachusetts, Rhode Island, and Vermont are not included in this table.

# Missingness: Estimated Numbers of Children Missing From Gifted Identification Through Lack of Access and Underidentification ${ }^{3}$ 

## Key Findings

- At the upper boundary more students are missing from gifted education identification than are identified ( 3.6 million missing and 3.2 million identified)
- Missingness occurs when students attend schools where identification does not occur or when they attend schools where they are underidentified.
- The percentage of missing students from each racial group are as follows:
- Black $-63 \%$ to $74 \%$ missing
- NHPI-59\% to $72 \%$ missing
- Latinx-53\% to $66 \%$ missing
- AIAN- $48 \%$ to $63 \%$ missing
- TMR-29\% to 49\% missing
- White-29\% to $42 \%$ missing
- Asian $-20 \%$ to $26 \%$ missing

In the state report cards, we reported estimated numbers of missing children nationally and for each state. As described in the state report card methods section, we used data from each state on the percentage of students identified with gifts and talents on average for a lower boundary estimate and the percentage of students identified with gifts and talents in Non-Title I schools for an upper boundary estimate. We applied these percentages to the population of students in each state who attend schools that do not identify students with gifts and talents (those without access) and to those who are underidentified in schools that identify to determine in each state an estimated range of the number of students missing from gifted identification overall and by race.

In the report cards, we reported the data in raw numbers to emphasize the extent to which individual students are missing and to draw attention to those numbers especially from the

3 Additional supporting data on Equity, as referenced in the National Report Card narrative, are contained in Appendix J.
different racial groups. Then we calculated percentages of students missing at lower and upper boundaries, in general and by race to enable comparisons among states concerning the magnitude of missingness. Specifically, as described in detail in the State Report Card Methods, we divided the number of students identified with gifts and talents by that same number plus the number missing at the lower boundary, then we repeated this procedure using the upper boundary estimate of missing students. The two resulting ratios when subtracted from 1 then multiplied by 100 provide a range of lower to upper boundary missing students. A percentage of $100 \%$ would indicate all students are missing from identification, a percentage of $25 \%$ would indicate $25 \%$ missing students. For example, in Alaska the percentage of missing AIAN students at the lower boundary was $89 \%$ and at the upper boundary was $90 \%$, meaning that between $89 \%$ and $90 \%$ of AIAN youth in Alaska are missing from gifted identification.

Figures 16 through 22 depict the stark realities of missingness across the country. Some states, such as Massachusetts, Michigan, New Hampshire, New York, Rhode Island, Vermont, and the District of Columbia, have so few schools with youth identified as gifted that their missingness estimates equal or approach $100 \%$ for most racial groups. Each figure has a line drawn at $20 \%$, which is "passing" by our scale, meaning $20 \%$ or fewer missing students is approaching acceptable. However, for children who are AIAN, Black, Latinx, NHPI, and TMR, missingness is excessive across all or most states. For AIAN youth, only Alabama, Georgia, and Oklahoma have fewer than $20 \%$ missing at the lower boundary (all of these states exceed $20 \%$ missing at the upper boundary). Of particular concern, with the exception of Oklahoma, states that contain a large percentage of AIAN youth tend to have disproportionate numbers of missing AIAN students as gifted. The top 10 states by percentage of population are Alaska, Oklahoma, Montana, South Dakota, New Mexico, North Dakota, Arizona, Wyoming, Minnesota, and Idaho, and 9 of these states are missing on average $70 \%$ of their AIAN gifted youth.

None of the 50 states and the District of Columbia have fewer than $20 \%$ of Black and Latinx youth missing for a passing grade. For Black youth, only Alaska, Arkansas, New Mexico, and Oklahoma have fewer than $50 \%$ missing. And of these 4 states, only Arkansas has a large population of Black youth, comprising $20.29 \%$ of its school enrollment. These results are shocking and leave little doubt about race being an issue when it comes to identifying students with gifts and talents.

AIAN YOUTH MISSING FROM GIFTED IDENTIFICATION


## FIGURE 16. AIAN Youth Missing From Gifted Education Identification by State, Lower to Upper Boundary Estimates in 2015-2016

Note. * In these states the state average identification rate is higher than the state average Non-Title I school identification. In these cases, the bars for \% Missing Lower Boundary and the Additional \% Missing Upper Boundary are reversed. $\rightarrow$ These states have the 10 largest proportions of AIAN students in their student enrollment among schools that identify students with gifts and talents.

ASIAN YOUTH MISSING FROM GIFTED IDENTIFICATION


## FIG URE 17. Asian Youth Missing From Gifted Education Identification by State, Lower to Upper Boundary Estimates in 2015-2016

Note. * In these states the state average identification rate is higher than the state average Non-Title I school identification. In these cases, the bars for \% Missing Lower Boundary and the Additional \% Missing Upper Boundary are reversed.

BLACK YOUTH MISSING FROM GIFTED IDENTIFICATION


## FIGURE 18, Black Youth Missing From Gifted Education Identification by State, Lower to Upper Boundary Estimates in 2015-2016

Note. * In these states, the state average identification rate is higher than the state average Non-Title I school identification. In these cases, the bars for \% Missing Lower Boundary and the Additional \% Missing Upper Boundary are reversed.
$\rightarrow$ These states have the 10 largest proportions of Black students in their student enrollment among schools that identify students with gifts and talents.

LATINX YOUTH MISSING FROM GIFTED IDENTIFICATION


## FIGURE 19. Latinx Youth Missing From Gifted Education Identification by State, Lower to Upper Boundary Estimates in 2015-2016

Note. *In these states, the state average identification rate is higher than the state average Non-Title I school identification. In these cases, the bars for \% Missing Lower Boundary and the Additional \% Missing Upper Boundary are reversed. $\rightarrow$ These states have the 10 largest proportions of Latinx students in their student enrollment among schools that identify students with gifts and talents.

NHPI YOUTH MISSING FROM GIFTED IDENTIFICATION


## FIGURE 20. NHPI Youth Missing From Gifted Education Identification by State, Lower to Upper Boundary Estimates in 2015-2016

Note. * In these states, the state average identification rate is higher than the state average Non-Title I school identification. In these cases, the bars for \% Missing Lower Boundary and the Additional \% Missing Upper Boundary are reversed. $\rightarrow$ These states have the 10 largest proportions of NHPI students in their student enrollment among schools that identify students with gifts and talents.

TMR YOUTH MISSING FROM GIFTED IDENTIFICATION


FIGURE 21. TMR Youth Missing From Gifted Education Identification by State, Lower to Upper Boundary Estimates in 2015-2016
Note. * In these states, the state average identification rate is higher than the state average Non-Title I school identification. In these cases, the bars for \% Missing Lower Boundary and the Additional \% Missing Upper Boundary are reversed.

WHITE YOUTH MISSING FROM GIFTED IDENTIFICATION


F/GURE 22. White Youth Missing From Gifted Education Identification by State, Lower
to Upper Boundary Estimates in 2015-2016 to Upper Boundary Estimates in 2015-2016
Note. * In these states, the state average identification rate is higher than the state average Non-Title I school identification. In these cases, the bars for \% Missing Lower Boundary and the Additional \% Missing Upper Boundary are reversed.

## Relationship Between Access and Equity Examined

Students who attend schools in low-income neighborhoods and/or schools in Town and Rural locales face additional challenges regarding access to and equity in gifted education. Additionally, students who are AIAN, Black, or Latinx face underrepresentation across the country despite relatively equal access to programs. To investigate the relationship between access and equity, we graphed equity ratios and representation indices by race for each state. These results are shown in Figures 23 through 29. These figures contain red lines at 0.80 (passing) and green lines at 0.95 (equitable) to place the states in quadrants and illustrate the intersection of access and equity. As clearly shown in these figures, opposite trends exist between underrepresented and well-represented groups, and access is not a major factor in the underrepresentation of these youth.

## ACCESS RATIO VS. REPRESENTATION INDEX FOR AIAN YOUTH



FIGURE 23. Access Ratios and Representation Indices for AIAN Youth by State in 2015-2016
Note. Bold typeface denotes the 10 states with the largest percentage of AIAN youth attending schools that identify students with gifts and talents.

## ACCESS RATIO VS. REPRESENTATION INDEX FOR ASIAN YOUTH



FIGURE 24. Access Ratios and Representation Indices for Asian Youth by State in 2015-2016
Note. Bold typeface denotes the 10 states with the largest percentage of Asian youth attending schools that identify students with gifts and talents.

## ACCESS RATIO VS. REPRESENTATION INDEX FOR BLACK YOUTH



FIGURE 25. Access Ratios and Representation Indices for Black Youth by State in 2015-2016
Note. Bold typeface denotes the 10 states with the largest percentage of Black youth attending schools that identify students with gifts and talents.

ACCESS RATIO VS. REPRESENTATION INDEX FOR LATINX YOUTH


FIGURE 26. Access Ratios and Representation Indices for Latinx Youth by State in 2015-2016
Note. Bold typeface denotes the 10 states with the largest percentage of Latinx youth attending schools that identify students with gifts and talents.

ACCESS RATIO VS. REPRESENTATION INDEX FOR NHPI YOUTH


FIGURE 27. Access Ratios and Representation Indices for NHPI Youth by State in 2015-2016
Note. Bold typeface denotes the 10 states with the largest percentage of NHPI youth attending schools that identify students with gifts and talents.

## ACCESS RATIO VS. REPRESENTATION INDEX FOR TMR YOUTH



FIGURE 28. Access Ratios and Representation Indices for TMR Youth by State in 2015-2016
Note. Bold typeface denotes the 10 states with the largest percentage of TMR youth attending schools that identify students with gifts and talents.

## ACCESS RATIO VS. REPRESENTATION INDEX FOR WHITE YOUTH



FIGURE 29. Access Ratios and Representation Indices for White Youth by State in 2015-2016
Note. Bold typeface denotes the 10 states with the largest percentage of White youth attending schools that identify students with gifts and talents.

## Summary

This project investigated laws, access, equity, and missingness related to gifted education identification as reported biennially to the federal government Office of Civil Rights by all public schools in 2000, 2011-2012, 2013-2014, and 2015-2016. Specifically, we examined these areas nationally, and by state across schools for Non-Title I and Title I schools, by Locale (i.e., City, Suburb, Town, Rural), and by Race (i.e., American Indian/Alaska Native [AIAN]; Asian; African American/Black [Black]; Hispanic/Latino [Latinx]; Native Hawaiian/Pacific Islander [NHPI]; Two or More Races [TMR]; and White). Report cards were developed for each state and findings were synthesized. Representation indices were used to investigate equity. These analyses were compared to previous similar analyses.

## Laws

Most states have laws concerning gifted education ( $N=38$ ); however, laws vary widely with some only having language requiring identification $(N=7)$ but not services, and some requiring identification and services $(N=30)$. 0f those 30 states, 6 have no funding and 4 are fully funded. Of the remaining 13 states with no laws, 11 have language, with 4 of those having partial funding. Only 2 states have no language, mandate, or funding. The top 25 states in terms of access to identification have mandates. Although access does not necessarily translate to equity, it is essential for equity. Additionally, access results in lower numbers of missing students. Those states with fully funded mandates for identification and services ( $\mathrm{FL}, \mathrm{GA}, \mathrm{IA}, \mathrm{OK}$ ) lead in access to gifted education services, with Florida and Oklahoma showing promise in areas of equity.

## Access

Access is defined as attending a school that identifies youth with gifts and talents. Nationally, in 2015-2016 67.38\% of students had such access and these students attended $55.58 \%$ of schools in the country. This is a decrease from 2000 of $6 \%$ and $4 \%$, respectively.

In general, more Title I schools than Non-Title I schools identify students with gifts and talents, so access in Title I schools is not a cause of underrepresentation or of students missing from gifted education identification nationally. However, nationally and in most states ( $N=42$; these data are not available for DC, MA, RI \& VT), fewer students are identified in Title I than in Non-Title I schools. Nationally in 2015-2016, 9.57\% of students who attend schools that identify youth with gifts and talents were identified. However, $13.46 \%$ of students in Non-Title I schools were identified; whereas only $7.86 \%$ of students in Title I schools were identified. Thus, nationally, students who attend Title I schools are identified at 0.58 the rate of those who attend, wealthier, Non-Title I schools.

Access does not guarantee equity. Nationally, all racial groups, except for AIAN youth (with access at 0.92 that of the general population) have equal access to identification. Although across the states, Black, Latinx, and NHPI have equal access, they remain underrepresented in gifted programs. AIAN youth have unequal access in several states (AK, AZ, MT, SD, WY) with large proportions of these youth, which exacerbates their missingness from gifted education identification.

Nationally, little differences exist across City, Suburb, Town, and Rural locales in access to identification. However, when examined by state, only eight states (FL, IA, ME, NC, OK, SC, TX, VA) have equal access across these locales. Unequal access exists for City and Town locales in 17 states, for Suburb locales in 5 states, and for Rural locales in 25 states. So , in half of the country, rural youth have less access to identification than do students who attend schools in other locales.

## Equity

Equity in gifted identification was examined using representation indices (RI), which are simply the percentage of a group identified as gifted divided by its percentage in the general population. Equity is defined as having an RI of at least 0.80 . A RI of 1.00 indicates perfect proportional representation. We refer to Rls greater than 1.00 as "well-represented" rather than "overrepresented."

$$
\mathrm{RI}=\frac{\% \text { Gifted }}{\% \text { Total }}
$$

Equity is a longstanding, persistent, and continuing problem for students who are AIAN, Black, Latinx, or NHPI nationally, and across all states and in all Locales. Fewer than $5 \%$ of students in the District of Columbia, Massachusetts, Rhode Island, and Vermont had access to identification, thus these states were omitted from analyses on equity.

Although fewer students are identified in general in Title I schools as stated above, students in all racial groups-except for Black youth-are more equitably identified (albeit still underidentified in most cases) in Title I than in Non-Title I schools.

Racial equity is so bad across the states, here we report the only equitable Rls by underrepresented group.
. For AIAN youth, RIs greater than 0.95 exist in Delaware, Alabama, North Dakota, Wyoming, Oklahoma, and Hawaii (overall); Wyoming, New York, Connecticut, Delaware, and Oklahoma (Non-Title I); and Delaware, Alabama, North Dakota, Hawaii, and Oklahoma (Title I). Ris from 0.80 to 0.949 exist in Georgia and New York (overall); Alabama, Arizona, Georgia, and West Virginia (Non-Title I); and Virginia, Georgia, Tennessee, and Florida (Title I).

- For Black youth, RIs greater than 0.95 exist in no states (overall); Illinois and Michigan (Non-Title I); and Utah, Wyoming, New York, and Michigan (Title I). Rls from 0.80 to 0.949 exist in New York, Michigan, Utah, and Arkansas (overall); no states (Non-Title I); and Arkansas and Maryland (Title I).
- For Latinx youth, Rls greater than 0.95 exist in no states (overall); no states (NonTitle I); and Utah (Title I). RIs from 0.80 to 0.949 exist in Florida and Texas (overall); Louisiana and Maryland (Non-Title I); and in Florida, Colorado, Texas, California, and Nevada (Title I).
- For NHPI youth, from the 20 states where they have sizeable populations, Rls greater than 0.95 exist in New Jersey, New York, Illinois, and Virginia (overall); Illinois, New York, New Jersey, and Utah (Non-Title I); and Virginia, New Jersey, Utah, Nevada, Georgia, and Colorado (Title I). RIs from 0.80 to 0.949 exist in Utah, Georgia, California, and Nevada (overall); Virginia and Georgia (Non-Title I); and in California and New York (Title I).

With regard to Locale, representation indices were used to investigate proportional equity overall and across Title I status. Although national equity across locales exceeded 0.80 except for Non-Title I Town schools, analyses by state revealed that Town and Rural schools have less equity in identification than do City and Suburb schools. Specifically, with 141 RIs for each locale among 47 states, 21 states had 34 RIs less than 0.80 for Rural locales and 31 states had 58 failing Rls for Town locales. Only three states, Arkansas, Mississippi, and New Hampshire, had equitable Rls across all locales and school types.

A breakdown by race, Title I status, and Locale further reveals the inequity across the country for underserved groups and for students who attend schools in Town or Rural locales.

## Missingness

An area not found in previous reports that demonstrates gifted identification trends is missingness. We define missingness as students who could/should have been identified, based on the percentages identified in each state on average (lower boundary) and at the higher rate of identification in Non-Title I schools (upper boundary). Missing students come from two sources: Schools in which students have no access to identification (schools that do not identify students) and schools in which some groups of students are underidentified.

Nationally, in 2015-2016, 3,255,232 students were identified with gifts and talents, but between 2,092,850 and 3,635,533 were missing either because they attended a school that did not identify any children, or because they were a member of a group underidentified in schools that do identify students. This represents from $39 \%$ to $52 \%$ of students missing from gifted identification.

When broken down by race, these missing students come largely from underrepresented groups with the following ranges of percentages of each race missing from gifted education identification (for example, 63\% to 74\% of Black youth are missing from gifted identification):

- AIAN: $48 \%$ to $63 \%$
- Asian: 20\% to 26\%
- Black: $63 \%$ to $74 \%$
- Latinx: $53 \%$ to $66 \%$
- NHPI: 59\% to $72 \%$
- TMR: $29 \%$ to $49 \%$
- White: $29 \%$ to $42 \%$

These data are described and provided in the full report and in the report cards for each state.

## Bottom Line

The field of gifted education has much work to do to mitigate the lack of opportunity and equity within the field if all talents in the United States are to be developed. Multiple things affect whether a child is identified with gifts and talents. First is access: The child must attend a school that actually identifies students, and currently, more than one-third of children in the U.S. do not attend such schools. Second is attending a wealthier school: Children who attend Title I schools are identified at only $58 \%$ the rate of those who attend Non-Title I schools. Third is race: Children who are Asian or White are 2 to more than 10 times more likely to be identified with gifts and talents than students who are AIAN, Black, Latinx, or NHPI. Finally, there are other variables including, but not limited to:

1. Using tests for identification that yield disparate results or were not normed on the populations to which they are being applied, and applying national normative cut-off scores as the most important (or only) pathway to identification;
2. Requiring multiple measures rather than using multiple pathways for identification;
3. Failing to account for and mitigate differences in opportunity to learn;
4. Requiring teacher referral as the first step to identification;
5. Failing to diversify the teaching force and to employ/graduate culturally competent teachers; and
6. Continuing to allow gifted education to be used as a tool of economic and/or racial segregation.

Through awareness of the problem, educators (and legislators) can act to:

1. Ensure that all schools identify students with gifts and talents;
2. Examine and improve rates of programming and identification in Title I schools; and
3. Put into place equitable identification procedures and programming designed to develop and reveal talents among all children, and especially those who have been underserved for generations.

## Promising Actions and Practices

Since the Javits act in the early 1990s, which had as its focus underserved youth in gifted education, numerous grants have been awarded to researchers to work toward solving this problem; however, limited literature exists on actual interventions and programs that work. In fact, much of the literature over the years in the field continues to be dedicated to identification procedures and measures, rather than to actual services designed to develop talents among underserved, underprivileged students. It is not enough in this report to simply define access, equity, and missingness, because in doing so we have uncovered unacceptable trends and conditions that cannot be allowed to continue in this country. Thus, following are some steps supported by the literature that can be taken to develop this plan and work to close gaps, develop talents, and improve achievement and educational outcomes.

1. Examine your own data to create a baseline, then work to create a plan to mitigate inequity in your identification and programming for youth with gifts and talents.

It is difficult to chart a course for the future if you do not know your starting point. Based on the data from this report, it is clear that few places have equity, so educators' own data should not serve as a source of sadness or shock; rather, they should serve as a beginning and inspiration from which to make changes. Educators should track these changes as they make modifications to identification and programming to deliberately be more inclusive and equitable.

## 2. Examine Current Identification Practices and Make Changes to Address Access and Equity

Much has been written on identification practices with an eye toward equity that can inform current practices including:

- Using nonverbal measures and procedures (Lohman, 2005; Nagleiri \& Ford, 2003; Raven et al., 2000a; Renzulli, 1973).
- Using measures that have been normed on the groups to which you plan to apply them (and that yield equivalent scores for those groups; Gentry et al., under review).
- Using universal screening (e.g., Card \& Giuliano, 2016; Peters et al., 2019; Plucker \& Peters, 2018), which gives every child an opportunity to be considered.
- Eliminating teachers as gatekeepers, or a two-stage screening process in which the first step to identification is being nominated by a teacher (McBee, Peters, \& Miller 2016; Peters et al., 2019).
- Using local norms (Carman, Walther, \& Bartch, 2018; Peters et al., 2019), which ensure students are being compared to students from their school or district. This can work well if the population is homogeneous
- Using local building norms (Peters et al., 2019), which is one step beyond using local norms in that it compares groups to others from the same group, for example by income or race. Using group specific norms enables educators to find students across all groups (Card \& Giuliano, 2016; Lohman, 2005).
- Implementing multiple pathways for identification (e.g., Gubbins et al., 2018; McBee, Shaunessey, \& Matthews, 2012; Renzulli \& Reis, 1985; Wyner et al., 2009) in which the most important way into the program is not a standardized measure. As early as 1981 Renzulli, Reis and Smith talked about a model of identification in which about half of the students tested into the program and the other half entered by alternative pathways. They also suggested a revolving door approach where students can revolve in and out based on their needs and activities.
- Eliminating the use of matrices for identification. Although using a matrix for identification is a common practice in the field, such use is not supported by the literature. A matrix sums unrelated and/or redundant measures into a single and arbitrary score with no evidence that the data are valid or reliable. They should not be used (Borland \& Wright, 1994).
- Considering students from underserved groups who score at or above the top quartile or even the top two quartiles as potentially talented will ensure that these students do not fall out of high achievement (Wyner et al., 2009).
- When using teacher input for identification, use a teacher nomination form such as the Hope Scale (Gentry et al., 2014) or the Scales for Rating the Behavioral Characteristics of Superior Students (Renzulli et al., 2010), as such scales have psychometric development and help focus teacher ratings. Teachers are in a prime position to recognize talent in their classrooms (High \& Udall, 1983; Peterson, 1999) and teacher-rating instruments have potential as screening tools or additional pathways to identifying students from low-income families (Stambaugh, 2007; VanTassel-Baska, 2008). Further, Hodge and Cudmore (1986) concluded that with explicit definitions of giftedness and a welldeveloped instrument, "the use of teacher judgments in the identification of gifted children should be continued, and, in fact, expanded" (p. 192).
- Identifying early and often to ensure multiple entry points and opportunities that account for student growth and development (Renzulli, 1971; Wyner et al., 2009).
- Finally, recognizing that no identification system or measure will work perfectly, developing alternative pathways and ways to make exceptions is key to effectively and dynamically identifying students. Too often, school personnel spend inordinate amounts of time and money trying to develop a perfect identification system, when one does not exist. A collection of student-focused practices will go a long way toward solving equity issues.


## 3. Diversify the Teaching Workforce

More teachers of color are needed, as the literature is clear about the benefits of diversifying the teaching force. Currently $82 \%$ of teachers are White (U. S. Department of Education, 2016), but only 49\% of students are White (see Table 14, Appendix I). When the teaching force is diversified, achievement gaps close (Egalite, Kisida, \& Winters, 2015) and academic outcomes improve for all students (Klopfenstein, 2005), all while providing students with strong role models. As Grissom and Redding (2016) found, Black students are three times more likely to be nominated as gifted by a Black teacher. Goings and Bianco (2016) have shown promising results for recruiting and retaining teachers of color through an innovating program they call Pathways to Teaching, through which they work with diverse high school students to explore teaching as a profession. For those who enter college to become a teacher, they provide quality mentoring and support throughout their time in college.
Low teacher pay is a serious economic deterrent to individuals interested in a career in education who come from underrepresented and/or historically impoverished populations. Bryant, Triplett, Watson, and Lewis (2017) recommend financially incentivizing entry into the profession for those individuals.

Grissom, Rodriguez, and Kern (2017) found evidence that a critical mass of 20\%-30\% of teachers from racial/ethnic minority backgrounds results in significant increased representation of racial/ethnic minority students in gifted programs. Additionally, with increased representation of teachers from ethnic/minority groups, they found no reduction in the representation of students from other groups.

## 4. Hire, develop, and nurture culturally competent, and culturally responsive teachers and support their use of pedagogy and curricula to which all students can relate

With the growth and speed of cultures interacting globally, it appears all someone has to do is think up a creative hashtag (\#) and the world may respond. So, is what's trending (trendy)
today, or this week, worth the time it takes to get to a level of understanding? It is a difficult task for educators, who have not been formally instructed on the numerous cultures that they will face to, (1) teach what they don't know (Howard, 2016), and (2) be prepared to support and affirm diversity in the context of culturally responsive practices (CRP) in a multicultural educational environment (Ford, Grantham, \& Whiting, 2008; Nieto \& Bode, 2004;). Culturally responsive practices/multicultural education/social justice education/educational equity, etc. is so much more than \#CRP; so much more than a trendy idea or educational term. These practices improve education for all while addressing the education debt evidenced by the achievement gap (Ladson-Billing, 2006). However, in too many minds there still remains difficulty in defining it. How is it different, and how do I teach it? Is there a relationship between culture and cognition (Hammond, 2014)?

Culturally responsive practice is multifaceted. Sound culturally responsive practices result in learning environments in which students gain a high degree of self-efficacy and develop an internal locus of control enabling them to become leaders and to take charge of and responsibility for their learning. To develop these skills in preservice teachers, preparation programs must expand the coursework requirements and field experiences in multicultural education, with extended training in underrepresented gifted populations (Center for Law and Social Policy, 2014; Ford, 1998; Ford \& King, Jr., 2014; Ford \& Russo, 2014). For those already in schools, professional development must be provided in the areas of asset (rather than deficit) views of minority students, the role of culture in the teacher-student relationship and school behavior, as well as gifted behaviors and the identification of gifted students from underrepresented groups (Gay, 2010; Vega \& Moore III, 2018).

## 5. Create learning environments that favor talent development over remediationfor all students

The best way to identify students with gifts and talents is to create learning environments in which they can develop and show these gifts, talents, and strengths. Rather than focusing on what students cannot do, attending to their strengths through a talent development approach will encourage them to achieve and enable educators to find talents they might otherwise have missed (Gentry, 2009). For example, in the Schoolwide Enrichment Model, Renzulli and Reis (1985) emphasized the need for enrichment for all students (most recently in work on enrichment clusters; Renzulli et al., 2014), that ensures access to gifted programming for every child in the school. Plucker and Peters (2018) recommended frontloading, preparing students as early as possible, through academic rigor and the support necessary for their success, for future participation in advanced high school courses such as AP and IB courses, as well as high-stakes testing. A review of programs for academically promising rural students (Lynn \& Glynn, 2019) echoed Plucker and Peters' frontloading recommendations for exam preparation,
and added to this the need to expose students to people and opportunities outside of their general experiences.

## 6. Consider implementing interventions that have shown promise in addressing inequity in programming

Programming models such as the Schoolwide Enrichment Model (Renzulli \& Reis, 2014), Enrichment Clusters (Renzulli et al., 2014); Total School Cluster Grouping (Gentry, 2014), STEM Starters (Robinson, Adelson, Kidd, \& Cunningham, 2018), the Scholar Identity Model (Whiting, 2009,2014 ) and others have shown promise in mitigating underrepresentation. Educators should investigate applications of these and other models and practices. More innovation and research is warranted as interventions that address inequity are developed and applied.

## Limitations

The research reported herein is limited to the data reported in the CRDC data collection. If states and districts reported inaccurate data, those are the data from which these results are derived. If state personnel review the results and find they do not believe the results accurately reflect the access, equity, and missingness in their state, then they need to work to ensure accurate data reporting, as these are the data available and published nationally and from which policy makers, researchers, and reporters will draw conclusions.

From these data, we know nothing about the existence, quality, or extent of any programming associated with the identification data.

The CRDC data are limited to the seven racial categories, which prevent any nuanced understanding of the many variations and subgroups within each federal category.

## Future Research

Future research should involve an update of this report with new OCR data. Compiling and reporting these data can keep at the forefront the issues of laws, access, equity, and missingness of gifted children, nationally and within each state. Doing so can result in several actions. First, states can ensure that they are accurately reporting data and they can hold districts accountable for continued inequities. Second, districts can examine their own data and engage in practices to mitigate underrepresentation and inequities in their schools and
communities. Third, as changes occur others can learn from places where efforts address inequity and where equity in gifted education improves.

Research can be conducted in places like Oklahoma, Texas, and Florida where equity for AIAN and Latinx youth is good. Results can inform others with less equity as they work to solve the issue. More analyses are warranted into Limited English Proficient populations and IDEA populations concerning their representations. Such analyses were beyond the scope of this report.

Research ought to be done that honors the numerous subgroups within the seven federal race categories to help illuminate differences among different cultures and contexts surrounding race. Similarly, future research might also, if data are available, investigate individual level poverty.

Finally, research into identification practices (those that yield unfair disproportionality) needs to continue as does research into practices and programs that help to discover and develop talents among underrepresented groups discussed in this report.

## REFERENCES

Baldwin, A. (1987). Undiscovered diamonds: The minority gifted child. Journal for the Education of the Gifted, 10, 271-285. doi:10.1177/016235328701000406
Battistich, V., Solomon, D., Kim, D. I., Watson, M., \& Schaps, E. (1995). Schools as communities, poverty levels of student populations, and students' attitudes, motives, and performance: A multilevel analysis. American Educational Research Journal, 32, 627- 658. doi:10.3102/00028312032003627
Borland, J. H. \& Wright, L. (1994). Identifying young, potentially gifted, economically disadvantaged students. Gifted Child Quarterly, 38, 164-171. doi:10.1177/001698629403800402
Brown, L., Sherbenov, R. J., \& Jonhsen, S. K. (2010). Test of Nonverbal Intelligence Fourth Edition: Examiner's manual. Austin, TX: ProED.
Bryant, A. C., Triplett, N. P., Watson, M. J., \& Lewis, C. W. (2017). The browning of American public schools: Evidence of increasing racial diversity and the implications for policy, practice, and student outcomes. Urban Review, 49, 263-278. doi:10.1007/s11256-017-0400-6
Card, D., \& Giuliano, L. (2016). Universal screening increases the representation of low-income and minority students in gifted education. Proceedings of the National Academy of Sciences, 113, 1367813683. doi:10.1073/pnas. 1605043113

Carman, C. A., Walther, C. A. P., \& Bartsch, R. A. (2018). Using the Cognitive Abilities Test (CogAT) 7 nonverbal battery to identify the gifted/talented: An investigation of demographic effects and norming plans. Gifted Child Quarterly, 62, 193-209. doi:10.1177/0016986217752097
Center for Law and Social Policy. (2014). Improving education outcomes for African American youth: Issues for consideration and discussion. Washington, DC: Author.
Clotfelter, C., Ladd, H. F., Vigdor, J., \& Wheeler, J. (2007). High-poverty schools and the distribution of teachers and principals. North Carolina Law Review, 85, 1345-1380. doi:10.1037/e722752011-001
de Brey, C., Musu, L., McFarland, J., Wilkinson-Flicker, S., Diliberti, M., Zhang, A., . . \& Wang, X. (2019). Status and trends in the education of racial and ethnic groups 2018 (NCES 2019-038). Washington, DC: U.S. Department of Education, National Center for Education Statistics.
Egalite, A. J., Kisida, B., \& Winters, M. A. (2015). Representation in the classroom: The effect of ownrace teachers on student achievement. Economics of Education Review, 45, 44-52. doi:10.1016/j. econedurev.2015.01.007
Ford, D. Y. (1998). The underrepresentation of minority students in gifted education: Problems and promises in recruitment and retention. Journal of Special Education, 32(1), 4-14. doi:10.1177/002246699803200102
Ford, D. Y., Grantham, T., \& Whiting, G. W. (2008) Culturally and linguistically diverse students in gifted education: Recruitment and retention issues. Exceptional Children, 74, 289-306. doi:10.1177/001440290807400302
Ford, D. Y. (2013). Recruiting and retaining culturally different students in gifted education. Waco, TX: Prufrock.

Ford, D. Y. (2014). Segregation and the underrepresentation of Blacks and Hispanics in gifted education: Social inequality and deficit paradigms. Roeper Review, 36, 143-154. doi:10.1080/02783193.2014.9 19563
Ford, D. Y., \& King, R. A. Jr. (2014). Blacked out: Racial and gender segregation in gifted education 60 years after Brown vs. Board of Education. Multiple Voices for Ethnically Diverse Exceptional Learners, 14(2), 3-11.
Ford, D. Y., \& Russo, C. J. (2014). No child left behind, unless a student is gifted and of color: Reflections on the need to meet the education needs of the gifted. The Journal of Law in Society, 15, 213-240.
Frasier, M. M. (1979). Rethinking the issues regarding the culturally disadvantaged gifted. Exceptional Children, 45, 538-542. doi:10.1177/001440297904500707
Gardner, H. (1983). Frames of mind: The theory of multiple intelligences, New York, NY: Basic Books.
Gay, G. (2010). Culturally responsive teaching: Theory, research, and practice (2nd ed.). New York, NY:Teacher's College Press.
Gentry, M. (2009). A comprehensive continuum of gifted education and talent development services: Discovering, developing, and enhancing young people's gifts and talents. Gifted Child Quarterly, 53, 262-265. doi:10.1177/0016986209346937
Gentry, M. (with Paul, K.A., McIntosh, J., Fugate, C. M., \& Jen, E.). (2014). Total school cluster grouping: A comprehensive, research-based plan for raising student achievement and improving teacher practices (2nd ed.). Waco, TX: Prufrock Press.
Gentry, M., Desmet, O., Chowkase, A., Cress, A., Lee, H., Karami, S., . . \& \& Green, C. (under review). Terman's enduring legacy: IQ testing, high stakes decisions, and inequity in gifted education. Manuscript under review.
Gentry, M., Pereira, N., Peters, S., McIntosh, J., \& Fugate, C. M. (2015). HOPE teacher rating scale: Involving teachers in equitable identification of gifted and talented students in K-12. Technical Manual. Waco, TX: Prufrock.
Goings, R., \& Bianco, B. (2016). It's hard to be who you don't see: An exploration of Black male high school students' perspectives on becoming teachers. The Urban Review, 48, 628-646. doi:10.1007/ s11256-016-0371-z
Grissom, J. A., \& Redding, C. (2016). Discretion and disproportionality: Explaining the underrepresentation of high-achieving students of color in gifted programs. AERA Open, 2, 1-25. doi: 10.1177/2332858415622175
Grissom, J. A., Rodriguez, L. A., \& Kern, E. C. (2017). Teacher and principal diversity and the representation of students of color in gifted programs. The Elementary School Journal, 117, 396-422. doi:10.1086/690274
Gubbins, E. J., Siegle, D., Hamilton, R., Peters, P., Carpenter, A. Y., O’Rourke, P., . . . \& Estepar-Garcia, W. (2018). Exploratory study on the identification of English learners for gifted and talented programs. Storrs: University of Connecticut, National Center for Research on Gifted Education. Retrieved from https://ncrge.uconn.edu/wp-conte
Hammond, Z. (2014). Culturally responsive teaching and the brain; Promoting authentic engagement and rigor among culturally and linguistically diverse student. Thousand Oaks, CA: Corwin.
High, M. H., \& Udall, A. J. (1983). Teacher ratings of students in relation to ethnicity of student and school ethnic balance. Journal for the Education of the Gifted, 6, 154-166. doi:10.1177/016235328300600303

Hoge, R. D., \& Cudmore, L. (1986). The use of teacher-judgment measures in the identification of gifted pupils. Teaching \& Teacher Education, 2, 181-196. doi:10.1016/0742-051x(86)90016-8
Howard, G. (2016). We can't teach what we don't know. New York, NY: Teachers College Press.
Howley, A., Rhodes, M., \& Beall, J. (2009). Challenges facing rural schools: Implications for gifted students. Journal for the Education of the Gifted, 32(4), 515-536. doi:10.1177/016235320903200404
Hulley, S. B., Cummings, S. R., \& Browner, W. S. (2013). Designing clinical research. Retrieved from https:// ebookcentral.proquest.com
Kaufman, A. S. \& Kaufman, N. L. (2004a). Kaufman Brief Intelligence Test (2nd ed.). Bloomington, MN: Pearson.
Kaufman, A. S., \& Kaufman, N. L. (2004b). Kaufman Assessment Battery for Children: Technical manual (2nd ed.). Circle Pines, MN: American Guidance Service.
Kettler, T., Russell, J., \& Puryear, J. S. (2015). Inequitable access to gifted education: Variance in funding and staffing based on locale and contextual school variables. Journal for the Education of the Gifted, 38, 99-117. doi:10.1177/0162353215578277
Klopfenstein, K. (2005). Beyond test scores: The impact of Black teacher role models on rigorous math taking. Contemporary Economic Policy, 23, 416-428. doi:10.1093/cep/byi031
Ladson-Billings, G. (2006). From the achievement gap to the educational debt: Understanding achievement in U.S. schools. Educational Researcher, 35(7), 3-12. doi:10.3102/0013189X035007003
Lawrence, B. K. (2009). Rural gifted education: A comprehensive literature review. Journal for the Education of the Gifted, 32, 461-494. doi:10.1177/0734282914548324
Lohman, D. F. (2005). Identifying academically talented minority students. Retrieved from https://nrcgt. uconn.edu/wp-content/uploads/sites/953/2015/04/rm05216.pdf
Lohman, D. F. (2011). Cognitive Abilities Test, Form 7. Rolling Meadows, IL: Riverside Publishing.
Lynn, R., \& Glynn, J. (2019). Small town, big talent: Identifying and supporting academically promising students in rural areas. Lansdowne, VA: Jack Kent Cooke Foundation.
Marland, S. P., Jr. (1972). Education of the gifted and talented-Volume 1: Report to the Congress of the United States by the U.S. Commissioner of Education. Retrieved from http://files.eric.ed.gov/fulltext/ ED056243.pdf
McBee, M. T., Peters, S. J., \& Miller, E. M. (2016). The impact of nomination stage on gifted program identification: A comprehensive psychometric analysis. Gifted Child Quarterly, 60, 258-278. doi:10.1177/0016986216656256
McBee, M. T., Shaunessy, E., \& Matthews, M. S. (2012). Policy matters: An analysis of district level efforts to increase the identification of underrepresented learners. Journal of Advanced Academics, 23, 326-344. doi:10.1177/1932202X12463511
McGrew, K. S., LaForte, E. M., \& Schrank, F. A. (2014). Technical manual: Woodcock-Johnson IV. Rolling Meadows, IL: Riverside.
Myers, S. L., Jr, Kim, H., \& Mandala, C. (2004). The effect of school poverty on racial gaps in test scores: The case of the Minnesota Basic Standards Tests. Journal of Negro Education, 73(1), 81-98. doi:10.2307/3211261
Naglieri, J. A. (2018a). Naglieri Nonverbal Ability Test: Manual levels A-D (3rd ed.). Bloomington, MN: Pearson.

Naglieri, J. A. (2018b). Naglieri Nonverbal Ability Test: Manual levels E-G (3rd ed.), Bloomington, MN: Pearson.
Naglieri, J. A. (2018c). NNAT3 special report: NNAT lower levels 2018 updated norms. Bloomington, MN: Pearson.
Naglieri, J. A., \& Ford, D. Y. (2003). Addressing underrepresentation of gifted minority children using the Naglieri Nonverbal Ability Test (NNAT). Gifted Child Quarterly, 47, 155-160. doi:10.1177/001698620304700206
National Association for Gifted Children. (n.d.). Definitions of giftedness. Retrieved from http://www. nagc.org/resources-publications/resources/definitions-giftedness
National Association for Gifted Children. (2013). 2012-2013 State of the states in gifted education: National policy and practice data. Washington, DC: Author.
National Association for Gifted Children. (2015). 2014-2015 State of the states in gifted education: Policy and practice data. Washington, DC: Author. Retrieved from http://www.nagc.org/sites/default/files/ key\%20reports/2014-2015\%20State\%20of\%20the\%20States\%20\%28final\%29.pdf
Nieto, S., \& Bode, P. (2004). Affirming diversity: The sociopolitical context of multicultural education. Boston, MA: Pearson.
Olszewski-Kubilius, P., \& Clarenbach, J. (2012). Unlocking emergent talent: Supporting high achievement of low-income, high ability students. Washington, DC: National Association for Gifted Children.
Otis, S., \& Lennon, R. (2003a). Otis-Lennon School Ability Test (8th ed.): Technical manual. Bloomington, MN: Pearson.
Otis, S., \& Lennon, R. (2003b). Otis-Lennon School Ability Test (8th ed.): Spring multilevel norms. Bloomington, MN: Pearson.
Otis, S., \& Lennon, R. (2003c). Otis-Lennon School Ability Test (8th ed.): Fall multilevel norms. Bloomington, MN: Pearson.
Passow, A. H., Goldberg, M., \& Tannenbaum A. J. (1967). Education of the disadvantaged. New York, NY: Holt, Rinehart, \& Winston.
Peters, S. J., Gentry, M., Whiting, G. W., \& McBee, M. T. (2019). Who gets served in gifted education? Demographic representation and a call for action. Gifted Child Quarterly, 63, 273-287. doi:10.1177/0016986219833738
Peters, S. J., \& Engerrand, K. G. (2016). Equity and excellence: Proactive efforts in the identification of underrepresented students for gifted and talented services. Gifted Child Quarterly, 60, 159-171. doi:10.1177/0016986216643165
Peterson, J. S. (1999). Gifted-Through whose cultural lens? An application of the postpositivistic mode of inquiry. Journal for the Education of the Gifted, 22, 354-383. doi:10.1177/016235329902200403
Plucker, J. A., Burroughs, N., \& Song, R. (2010). Mind the (other) gap: The growing excellence gap in K-12 education. Bloomington, IN: Center for Evaluation and Education Policy. Retrieved from http://ceep. indiana.edu/pdf/The_Growing_Excellence_Gap_K12_Education.pdf
Plucker, J. A., Hardesty, J., \& Burroughs, N. (2013). Talent on the sidelines:' Excellence gaps and America's persistent talent underclass. Storrs: University of Connecticut, Center for Education Policy Analysis. Retrieved from http://www.nagc.org/sites/default/files/key\ reports/Talent\ on\ the\  Sidelines\%20(2013).pdf

Plucker, J. A., Giancola, J., Healey, G., Arndt, D., \& Wang, C. (2015). Equal talents, unequal opportunities: A report card on state support for academically talented low-income students. Retrieved from http:// www.jkcf.org/assets/1/7/JKCF_ETUO_Report_with_State_Cards_rv.pdf
Plucker, J. A., Glynn, J., Healey, G., \& Dettmer, A. (2018). Equal talents, unequal opportunities: A report card on state support for academically talented low-income students (2 ${ }^{\text {nd }}$ ed.). Retrieved from https:// www.jkcf.org/wp-content/uploads/2018/06/FINAL_2018_JKCF_-_Equal_Talents_Unequal_ Opportunities_-_Web_version.pdf
Raven, J., Raven, J. C., \& Court, J. H. (2000a). Raven manual: Section 1. General overview (1998 Edition). San Antonio, TX: Pearson.
Raven, J., Raven, J. C., \& Court, J. H. (2000b). Raven manual: Section 3. Standard progressive matrices (including the parallel and plus versions), 2000 Edition. San Antonio, TX: Pearson.
Renzulli, J. S. (1971). The identification and development of talent potential among the disadvantaged. Contemporary Education, 42(3), 122-125.
Renzulli, J. S. (1973). Talent potential in minority group students. Exceptional Children, 39, 437-444. doi:10.1177/001440297303900601
Renzulli, J. S. (1978). What makes giftedness? Kappan, 60(3), 181, doi:10.1177/003172171109200821
Renzulli, J. S., Gentry, M., \& Reis, S. M. (2014) Enrichment clusters: A practical plan for real-world, studentdriven learning. Waco, TX: Prufrock.
Renzulli, J. S., \& Reis, S. M. (1985). The schoolwide enrichment model: A comprehensive plan for educational excellence. Mansfield Center, CT: Creative Learning Press.
Renzulli, J. S., \& Reis, S. M. (2014). The schoolwide enrichment model: A how-to guide fortalent development ( $3^{\text {rd }}$ ed.). Waco, TX: Prufrock.
Renzulli, J. S., Reis, S. M. \& Smith, L. H. (1981). The revolving door identification model. Mansfield Center, CT: Creative Learning Press.
Renzulli, J. S., Smith, L. H., White, A. J., Callahan, C. M., Hartman, R. K., Westberg, K. L., . . \& Systma Reed, R. E. (2010). Scales for rating the behavioral characteristics of superior students: Technical and administration manual (3rd ed.). Waco, TX: Prufrock Press.
Robinson, A., Adelson, J., Kidd, K. A., \& Cunningham, C. M. (2018). A talent for tinkering: Developing talents in children from low-income households through engineering curriculum. Gifted Child Quarterly, 62(1), 130-144. doi:10.1177/0016986217738049
Roid, G. (2003). Stanford-Binet Intelligence Scale (5th ed.). Chicago, IL: Riverside.
Stambaugh, T. (2007). Next steps: An impetus for future directions in research, policy, and practice for low-income promising learners. In J. VanTassel-Baska \& T. Stambaugh (Eds.), Overlooked gems: A national perspective on low-income promising learners (pp. 83-88). Washington, DC: National Association for Gifted Children.
Sternberg, R. J. (1985). Beyond IQ: A triarchic theory of human intelligence. New York, NY: Cambridge University Press.
Torrance, E. P. (1968). Finding hidden talents among disadvantaged children. Gifted Child Quarterly, 12, 131-137. doi:10.117/001698626801200301
29 C.F.R. $\S 1607.4(\mathrm{D})(1978)$ ) Information on Impact. Retrieved from https://www.govregs.com/regulations/ expand/title29_chapterXIV_part1607_subjgrp21_section1607.4
U.S. Department of Education. (2016). The state of racial diversity in the educator workforce. Retrieved from https://www2 .ed.gov/rschstat/eval/highered/racial-diversity/state-racial - diversityworkforce.pdf
U.S. Department of Education, Office of Educational Research. (1993). National excellence: A case for developing America's talent. Washington, DC: U.S. Government Printing Office.
Vanderhaar, J. E., Muñoz, M. A., \& Rodosky, R. J. (2006). Leadership as accountability for learning: The effects of school poverty, teacher experience, previous achievement, and principal preparation programs on student achievement. Journal of Personnel Evaluation in Education, 19, 17-33. doi:10.1007/s11092-007-9033-8
VanTassel-Baska, J. (2008). Alternative assessments with gifted and talented students. Waco, TX: Prufrock Press.
Vega, D., \& Moore, J. L., III. (2018) Access to gifted education among African-American and Latino males. Journal for Multicultural Education, 12, 237-248. doi:10.1108/JME-01-2017-0006
Wechsler, D. (2014a). Wechsler intelligence scale for children (3rd ed.). San Antonio, TX: The Psychological Corporation.
Wechsler, D. (2014b). Wechsler intelligence scale for children V. Bloomington, MN: Pearson.
Whiting, G. W. (2009). Gifted Black males: Understanding and decreasing barriers to achievement and identity. Roeper Review, 31, 224-233. doi:10.1080/02783190903177598
Whiting, G. W. (2014). The Scholar Identity Model: Black male success in the K-12 context. In F. A. Bonner (Ed.), Building on resilience: Models and frameworks of Black males' success across the P-20 pipeline (pp. 88-106). Sterling, VA: Stylus Press.
Witty, P. A., \& Jenkins, M. D. (1934). The educational achievement of a group of gifted negro children. Journal of Educational Psychology, 25, 585-597. doi:10.1037/h0075535.
Wyner, J. S., Bridgeland, J. M., \& Dilulio, J. J. (2007). The achievement trap (Rev. ed.). Washington, DC: Jack Kent Cooke Foundation.
Yaluma, C. B., \& Tyner, A. (2018). Is there a gifted gap? Gifted education in high-poverty schools. Retrieved from https://edexcellence.net/publications/is-there-a-gifted-gap.
Yoon, S. Y., \& Gentry, M. (2009). Racial and ethnic representation in gifted programs: Current status of and implications for gifted Asian American students. Gifted Child Quarterly, 53, 121-136. doi:10.1177/0016986208330564

## ABOUT THE AUTHORS

Marcia Gentry, Ph.D., professor of Educational Studies, directs the Gifted Education Research Institute at Purdue University. She actively participates in NAGC and AERA, frequently contributes to the literature, has national and international partnerships, and regularly serves as a speaker and consultant. Dr. Gentry has received multiple grants in support of her work with low-SES, Native American, and underrepresented youth in gifted education. Her research interests include student attitudes toward school; the use of cluster-grouping and differentiation to meet the needs of gifted youth while helping all students achieve at high levels; the use of non-traditional settings for talent development; and the development and recognition of talent among underserved populations.

Anne Gray, Doctoral Candidate, is Bilagáana, married to Táchii'nii, with four Diné daughters. She is a research assistant with the Gifted Education Research and Resource Institute (GER²I) at Purdue University and coordinated the Super Saturday/Super Summer K-8 enrichment programs. Her research focuses on American Indian/Alaska Native, Indigenous and minoritized youth with gifts and talents, equity in gifted education, and critical theory.

Gilman W. Whiting, Ph.D. (Purdue '04), Associate professor and director of graduate studies for the Department of African American and Diaspora Studies. He directs the Scholar Identity Institute, the Black male initiative, and chairs the Achievement Gap Institute at the George W. Peabody College of Education at Vanderbilt University. His research includes; disparity in special and gifted education; sociology of race, sports, and American culture; and qualitative research methods. He created the Scholar Identity Model ${ }^{[m}$ - a psycho-social model created to assist whole communities to rethink ways to combat academic apathy. He consults with numerous school districts and programs nationally and internationally.

Yukiko Maeda, Ph.D. is Associate Professor of Research Design and Methodology. Her research promotes understanding, establishing and disseminating best practices in the use of data in educational research. She has expertise in meta-analysis and multilevel modeling. Her recent research contributions include understanding data use at school settings for decision making and identifying and presenting remedies for methodological issues for data analysis.

Nielsen Pereira, Ph.D. is an Assistant Professor of Gifted, Creative, and Talented Studies at Purdue University. His research interests include the design and assessment of learning in varied gifted and talented education contexts; understanding gifted and talented student
experiences in talent development programs; and conceptual, contextual, and measurement issues in the identification of gifted and talented populations. He was the recipient of the 2018 Hollingworth Award from the National Association for Gifted Children and the 2019 Pathbreaker Award from the American Educational Research Association Research on Giftedness, Creativity, and Talent special interest group.

## APPENDICES

## APPENDIX A

Students Who Have Access to Identification as Gifted and Schools That Identify Students by State, 2015-2016

| State | Total Students | Total Students in Schools That ID GT \# \& \% | Students ID as GT From Schools That Have GT ID \# \& \% | Total Schools | Total Schools <br> That ID GT \# \& \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| National | 50,459,595 | 33,997,501 | 3,255,232 | 96,360 | 55,495 |
|  |  | 67.38 | 9.57 |  | 57.59 |
| GA | 1,766,715 | 1,689,184 | 189,320 | 2,407 | 2,101 |
|  |  | 95.61 | 11.21 |  | 87.29 |
| IA | 501,369 | 470,768 | 44,078 | 1,365 | 1,217 |
|  |  | 93.90 | 9.36 |  | 89.16 |
| CO | 899,614 | 840,019 | 69,067 | 1,868 | 1,591 |
|  |  | 93.38 | 8.22 |  | 85.17 |
| TX | 5,302,101 | 4,943,581 | 404,721 | 8,616 | 7,269 |
|  |  | 93.24 | 8.19 |  | 84.37 |
| VA | 1,285,001 | 1,196,120 | 160,544 | 1,971 | 1,772 |
|  |  | 93.08 | 13.42 |  | 89.90 |
| KY | 687,776 | 639,451 | 94,851 | 1,407 | 1,235 |
|  |  | 92.97 | 14.83 |  | 87.78 |
| NC | 1,551,714 | 1,441,276 | 170,771 | 2,618 | 2,309 |
|  |  | 92.88 | 11.85 |  | 88.20 |
| OK | 695,772 | 643,265 | 96,726 | 1,815 | 1,580 |
|  |  | 92.45 | 15.04 |  | 87.05 |
| NV | 470,642 | 424,945 | 24,566 | 658 | 484 |
|  |  | 90.29 | 5.78 |  | 73.56 |
| SC | 766,204 | 690,448 | 118,013 | 1,236 | 1,061 |
|  |  | 90.11 | 17.09 |  | 85.84 |
| AR | 484,570 | 429,096 | 46,172 | 1,092 | 933 |
|  |  | 88.55 | 10.76 |  | 85.44 |
| FL | 2,779,888 | 2,442,435 | 164,884 | 3,952 | 3,040 |
|  |  | 87.86 | 6.75 |  | 76.92 |
| LA | 722,237 | 626,191 | 29,600 | 1,367 | 1,085 |
|  |  | 86.70 | 4.73 |  | 79.37 |
| NM | 339,185 | 292,748 | 16,239 | 880 | 615 |
|  |  | 86.31 | 5.55 |  | 69.89 |
| KS | 490,982 | 418,652 | 12,643 | 1,356 | 1,020 |
|  |  | 85.27 | 3.02 |  | 75.22 |
| IN | 1,032,577 | 872,826 | 126,906 | 1,879 | 1,520 |
|  |  | 84.53 | 14.54 |  | 80.89 |
| NE | 316,985 | 263,692 | 35,778 | 1,064 | 675 |
|  |  | 83.19 | 13.57 |  | 63.44 |
| OR | 573,431 | 469,956 | 33,111 | 1,283 | 906 |
|  |  | 81.96 | 7.05 |  | 70.62 |
| PA | 1,724,961 | 1,394,078 | 60,033 | 3,027 | 2,361 |
|  |  | 80.82 | 4.31 |  | 78.00 |
| ME | 177,549 | 141,393 | 9,528 | 589 | 411 |
|  |  | 79.64 | 6.74 |  | 69.78 |
| WV | 278,514 | 207,906 | 5,337 | 720 | 495 |
|  |  | 74.65 | 2.57 |  | 68.75 |
| AL | 745,127 | 554,730 | 51,695 | 1,400 | 1,042 |
|  |  | 74.45 | 9.32 |  | 74.43 |
| WA | 1,094,901 | 790,129 | 51,306 | 2,305 | 1,371 |
|  |  | 72.16 | 6.49 |  | 59.48 |
| MS | 491,287 | 351,591 | 33,207 | 978 | 667 |
|  |  | 71.57 | 9.44 |  | 68.20 |
| AK | 131,920 | 93,507 | 6,397 | 503 | 219 |
|  |  | 70.88 | 6.84 |  | 43.54 |


|  |  | Total Students in <br> Schools That ID GT \# | Students ID as GT <br> From Schools That <br> Have GT ID \# \& \% | Total Schools | That ID GT \# \& \% |
| :--- | :---: | :---: | :---: | :---: | ---: |

Note. No students in the District of Columbia, and less than 5\% of students in Massachusetts, Rhode Island, and Vermont have access to identification rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

## APPENDIX B

Access to Gifted Identification by State for 2000, 2011-2012, 2013-2014, and 2015-2016

| State | 2015-2016 |  | 2013-2014 |  | 2011-2012 |  | 2000 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | \% Access to GT | \% in GT | \% Access to GT | \% in GT | \% Access to GT | \% in GT | \% Access to GT | \% in GT |
| Nation | 67.38 | 9.57 | 66.51 | 10.19 | 66.90 | 9.61 | 71.66 | 8.74 |
| GA | 95.61 | 11.21 | 92.39 | 14.16 | 95.09 | 10.96 | 96.67 | 8.27 |
| IA | 93.90 | 9.36 | 93.15 | 10.30 | 94.03 | 9.93 | 88.72 | 9.20 |
| CO | 93.38 | 8.22 | 93.97 | 8.40 | 89.00 | 7.25 | 66.86 | 9.67 |
| TX | 93.24 | 8.19 | 92.35 | 8.43 | 93.44 | 8.23 | 94.27 | 9.54 |
| VA | 93.08 | 13.42 | 92.35 | 13.22 | 92.71 | 12.77 | 93.58 | 10.99 |
| KY | 92.97 | 14.83 | 97.47 | 16.47 | 85.00 | 14.89 | 81.42 | 14.14 |
| NC | 92.88 | 11.85 | 87.24 | 11.76 | 87.35 | 12.16 | 93.00 | 10.77 |
| OK | 92.45 | 15.04 | 90.99 | 15.20 | 91.49 | 15.16 | 95.03 | 14.62 |
| NV | 90.29 | 5.78 | 53.10 | 6.47 | 50.88 | 3.85 | 72.56 | 4.76 |
| SC | 90.11 | 17.09 | 87.55 | 15.53 | 87.39 | 13.74 | 91.11 | 10.90 |
| AR | 88.55 | 10.76 | 89.36 | 11.14 | 91.96 | 10.63 | 91.66 | 11.39 |
| FL | 87.86 | 6.75 | 87.08 | 6.81 | 86.52 | 6.29 | 87.00 | 5.10 |
| LA | 86.70 | 4.73 | 86.80 | 5.08 | 66.76 | 4.50 | 76.21 | 4.47 |
| NM | 86.31 | 5.55 | 85.90 | 5.39 | 89.48 | 5.11 | 87.65 | 4.39 |
| KS | 85.27 | 3.02 | 85.53 | 3.39 | 85.92 | 3.39 | 89.05 | 3.68 |
| IN | 84.53 | 14.54 | 84.08 | 14.62 | 81.02 | 15.56 | 62.45 | 10.05 |
| NE | 83.19 | 13.57 | 82.00 | 14.81 | 85.37 | 13.77 | 77.84 | 14.55 |
| OR | 81.96 | 7.05 | 88.61 | 7.57 | 90.68 | 7.45 | 91.43 | 8.42 |
| PA | 80.82 | 4.31 | 79.02 | 4.74 | 88.27 | 4.34 | 93.46 | 5.24 |
| ME | 79.64 | 6.74 | 74.81 | 6.60 | 75.70 | 6.01 | 50.46 | 10.71 |
| WV | 74.65 | 2.57 | 73.75 | 2.99 | 80.57 | 2.30 | 78.01 | 2.75 |
| AL | 74.45 | 9.32 | 75.20 | 11.20 | 76.53 | 10.93 | 75.09 | 4.67 |
| WA | 72.16 | 6.49 | 48.74 | 7.08 | 43.32 | 8.16 | 51.51 | 8.67 |
| MS | 71.57 | 9.44 | 72.09 | 9.47 | 70.66 | 9.47 | 78.25 | 7.23 |
| AK | 70.88 | 6.84 | 71.15 | 7.38 | 60.98 | 7.73 | 88.37 | 4.85 |
| MO | 70.51 | 5.58 | 71.94 | 6.06 | 72.00 | 5.61 | 75.13 | 4.58 |
| MD | 69.46 | 24.37 | 74.05 | 21.77 | 72.64 | 21.74 | 65.79 | 18.19 |
| OH | 68.60 | 9.09 | 55.56 | 7.90 | 49.56 | 7.46 | 62.93 | 8.78 |
| CA | 67.78 | 10.00 | 71.23 | 11.00 | 75.76 | 10.88 | 86.06 | 8.00 |
| HI | 63.78 | 4.36 | 40.42 | 7.57 | 24.55 | 5.60 | 83.74 | 7.85 |
| AZ | 63.30 | 7.40 | 65.80 | 7.49 | 74.50 | 7.78 | 84.42 | 7.62 |
| WI | 60.90 | 8.55 | 61.18 | 10.31 | 55.21 | 10.79 | 70.00 | 14.24 |
| TN | 54.03 | 2.82 | 54.33 | 3.05 | 69.86 | 3.54 | 70.69 | 4.23 |
| MN | 53.60 | 14.76 | 53.77 | 13.59 | 49.83 | 16.00 | 60.26 | 12.12 |
| MT | 52.46 | 6.40 | 54.72 | 7.24 | 62.27 | 6.72 | 58.24 | 9.58 |
| ID | 52.25 | 4.63 | 50.68 | 7.32 | 63.80 | 4.68 | 74.43 | 5.13 |
| NJ | 50.77 | 11.50 | 50.99 | 11.85 | 54.39 | 12.02 | 64.37 | 12.14 |
| WY | 49.99 | 7.76 | 51.46 | 7.33 | 36.68 | 8.93 | 26.81 | 7.01 |
| UT | 36.81 | 12.68 | 35.07 | 13.58 | 31.70 | 12.27 | 23.46 | 12.41 |
| DE | 33.17 | 7.84 | 26.44 | 8.87 | 18.69 | 10.68 | 71.19 | 7.38 |
| CT | 33.01 | 6.73 | 34.64 | 6.57 | 37.11 | 6.32 | 52.88 | 6.19 |
| ND | 29.57 | 8.76 | 29.36 | 7.79 | 30.87 | 10.56 | 22.94 | 10.31 |
| SD | 28.94 | 6.77 | 30.34 | 6.09 | 34.89 | 5.75 | 52.36 | 6.47 |
| IL | 25.76 | 13.20 | 35.04 | 19.38 | 29.48 | 11.92 | 59.01 | 10.59 |
| NY | 11.38 | 14.11 | 12.60 | 13.90 | 12.82 | 11.82 | 21.46 | 10.97 |
| MI | 10.20 | 12.47 | 11.87 | 11.38 | 15.40 | 12.63 | 31.51 | 11.46 |
| NH | 9.24 | 11.94 | 11.26 | 10.54 | 12.99 | 10.78 | 16.82 | 9.81 |
| MA | 4.16 | 16.99 | 4.88 | 9.44 | 6.97 | 9.41 | 13.49 | 8.59 |
| VT | 2.37 | 6.15 | 3.57 | 11.76 | 2.88 | 11.60 | 9.61 | 11.32 |
| RI | 1.09 | 9.61 | 1.24 | 24.22 | 6.34 | 8.50 | 26.29 | 8.04 |
| DC | 0.00 | 0.00 | 0.63 | 5.45 | 1.54 | 5.41 | 0.00 | 0.00 |

Note. States in bold font have mandates for gifted; this table is sorted by greatest access in the year 2015-2016.

## Appendix C

## Schools With or Without Gifted Identification by Non-Title I and Title I Status

## TABLE CI

Schools With or Without Gifted Identification by Non-Title I and Title I Status Nationally for 2000, 2011-2012, 2013-2014, and 2015-2016

| Year | Total Schools | Non-Title I <br> Schools-No ID \# and \% | Non-Title I Schools With ID \# and \% | Ratio NonTitle I With ID/Non-Title I No ID | Title I Schools -No ID \# and \% | Title I Schools-With ID \#and \% | Ratio Title I With ID/Title I No ID | Grand Ratio <br> Title I Ratio/ <br> Non-Title I Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2015-2016 | 96,360 | 11,505 | 14,435 |  | 25,595 | 40,630 |  |  |
|  |  | 11.94\% | 14.98\% | 1.25 | 26.56\% | 42.16\% | 1.59 | 1.27 |
| 2013-2014 | 95,507 | 10,574 | 13,813 |  | 27,823 | 40,529 |  |  |
|  |  | 11.07\% | 14.46\% | 1.31 | 29.13\% | 42.44\% | 1.46 | 1.12 |
| 2011-12 | 95,635 | 16,543 | 22,424 |  | 19,080 | 32,001 |  |  |
|  |  | 17.30\% | 23.45\% | 1.36 | 19.95\% | 33.46\% | 1.68 | 1.24 |
| 2000 | 88,601 |  |  |  |  |  |  |  |

Notes. Percentages for each category for each time period do not add to 100 because a small number of schools did not report Title I status. Title status was not available for the 2000 date.

## TABLE C2

Schools With or Without Gifted Identification by Non-Title I and Title I Status by State, 2015-2016

| State | Total Schools | Non-Title I Schools- No ID \# and \% | Non-Title I <br> Schools- With ID \# and \% | Ratio NonTitle I With ID /Non-Title I No ID | Title I <br> Schools-No ID \# and \% | Title I <br> Schools-With ID \# and \% | Ratio Title I with ID /Title I No ID | Grand Ratio Title I Ratio/ Non-Title I Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| National | 96,360 | 11,505 | 14,435 |  | 25,595 | 40,630 |  |  |
|  |  | 11.94\% | 14.98\% | 1.25 | 26.56\% | 42.16\% | 1.59 | 1.27 |
| AK | 503 | 44 | 100 |  | 237 | 118 |  |  |
|  |  | 8.75\% | 19.88\% | 2.27 | 47.12\% | 23.46\% | 0.50 | 0.22 |
| AL | 1,400 | 202 | 257 |  | 144 | 777 |  |  |
|  |  | 14.43\% | 18.36\% | 1.27 | 10.29\% | 55.50\% | 5.40 | 4.24 |
| AR | 1,092 | 24 | 54 |  | 101 | 869 |  |  |
|  |  | 2.20\% | 4.95\% | 2.25 | 9.25\% | 79.58\% | 8.60 | 3.82 |
| AZ | 1,977 | 210 | 7 |  | 747 | 942 |  |  |
|  |  | 10.62\% | 0.35\% | 0.03 | 37.78\% | 47.65\% | 1.26 | 37.83 |
| CA | 10,138 | 736 | 1,472 |  | 2,808 | 4,043 |  |  |
|  |  | 7.26\% | 14.52\% | 2.00 | 27.70\% | 39.88\% | 1.44 | 0.72 |
| CO | 1,868 | 134 | 1,033 |  | 134 | 556 |  |  |
|  |  | 7.17\% | 55.30\% | 7.71 | 7.17\% | 29.76\% | 4.15 | 0.54 |
| CT | 1,238 | 467 | 161 |  | 422 | 181 |  |  |
|  |  | 37.72\% | 13.00\% | 0.34 | 34.09\% | 14.62\% | 0.43 | 1.24 |
| DC | 221 | 37 | 0 |  | 183 | 0 |  |  |
|  |  | 16.74\% | 0.00 | 0.00 | 82.81\% | 0.00 | 0.00 | 0.00 |
| DE | 235 | 69 | 12 |  | 85 | 64 |  |  |
|  |  | 29.36\% | 5.11\% | 0.17 | 36.17\% | 27.23\% | 0.75 | 4.33 |


| State | Total Schools | Non-Title I <br> Schools- No ID <br> \# and \% | Non-Title I <br> Schools- With ID \# and \% | Ratio NonTitle I With ID /Non-Title I No ID | Title I Schools-No ID \# and \% | Title I <br> Schools-With ID \# and \% | Ratio Title I with ID /Title I No ID | Grand Ratio Title I Ratio/ Non-Title I Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| FL | 3,952 | 373 | 480 |  | 538 | 2,557 |  |  |
|  |  | 9.44\% | 12.15\% | 1.29 | 13.61\% | 64.70\% | 4.75 | 3.69 |
| GA | 2,407 | 43 | 639 |  | 170 | 1,453 |  |  |
|  |  | 1.79\% | 26.55\% | 14.86 | 7.06\% | 60.37\% | 8.55 | 0.58 |
| HI | 290 | 25 | 73 |  | 110 | 82 |  |  |
|  |  | 8.62\% | 25.17\% | 2.92 | 37.93\% | 28.28\% | 0.75 | 0.26 |
| IA | 1,365 | 46 | 377 |  | 83 | 839 |  |  |
|  |  | 3.37\% | 27.62\% | 8.20 | 6.08\% | 61.47\% | 10.11 | 1.23 |
| ID | 720 | 95 | 50 |  | 308 | 259 |  |  |
|  |  | 13.19\% | 6.94\% | 0.53 | 42.78\% | 35.97\% | 0.84 | 1.60 |
| IL | 4,081 | 476 | 242 |  | 2,648 | 584 |  |  |
|  |  | 11.66\% | 5.93\% | 0.51 | 64.89\% | 14.31\% | 0.22 | 0.43 |
| IN | 1,879 | 82 | 280 |  | 267 | 1,235 |  |  |
|  |  | 4.36\% | 14.90\% | 3.41 | 14.21\% | 65.73\% | 4.63 | 1.35 |
| KS | 1,356 | 9 | 163 |  | 280 | 856 |  |  |
|  |  | 0.66\% | 12.02\% | 18.11 | 20.65\% | 63.13\% | 3.06 | 0.17 |
| KY | 1,407 | 111 | 175 |  | 58 | 1,060 |  |  |
|  |  | 7.89\% | 12.44\% | 1.58 | 4.12\% | 75.34\% | 18.28 | 11.59 |
| LA | 1,367 | 15 | 89 |  | 246 | 984 |  |  |
|  |  | 1.10\% | 6.51\% | 5.93 | 18.00\% | 71.98\% | 4.00 | 0.67 |
| MA | 1,873 | 763 | 20 |  | 997 | 48 |  |  |
|  |  | 40.74\% | 1.07\% | 0.03 | 53.23\% | 2.56\% | 0.05 | 1.84 |
| MD | 1,434 | 173 | 440 |  | 324 | 476 |  |  |
|  |  | 12.06\% | 30.68\% | 2.54 | 22.59\% | 33.19\% | 1.47 | 0.58 |
| ME | 589 | 27 | 36 |  | 151 | 374 |  |  |
|  |  | 4.58\% | 6.11\% | 1.33 | 25.64\% | 63.50\% | 2.48 | 1.86 |
| MI | 3,616 | 1,185 | 118 |  | 2,154 | 128 |  |  |
|  |  | 32.77\% | 3.26\% | 0.10 | 59.57\% | 3.54\% | 0.06 | 0.60 |
| MN | 2,170 | 881 | 320 |  | 551 | 402 |  |  |
|  |  | 40.60\% | 14.75\% | 0.36 | 25.39\% | 18.53\% | 0.73 | 2.01 |
| M0 | 2,372 | 206 | 245 |  | 838 | 1,035 |  |  |
|  |  | 8.68\% | 10.33\% | 1.19 | 35.33\% | 43.63\% | 1.24 | 1.04 |
| MS | 978 | 144 | 92 |  | 158 | 573 |  |  |
|  |  | 14.72\% | 9.41\% | 0.64 | 16.16\% | 58.59\% | 3.63 | 5.68 |
| MT | 825 | 79 | 21 |  | 525 | 195 |  |  |
|  |  | 9.58\% | 2.55\% | 0.27 | 63.64\% | 23.64\% | 0.37 | 1.40 |
| NC | 2,618 | 58 | 421 |  | 224 | 1,885 |  |  |
|  |  | 2.22\% | 16.08\% | 7.26 | 8.56\% | 72.00\% | 8.42 | 1.16 |
| ND | 481 | 174 | 36 |  | 220 | 49 |  |  |
|  |  | 36.17\% | 7.48\% | 0.21 | 45.74\% | 10.19\% | 0.22 | 1.08 |
| NE | 1,064 | 227 | 373 |  | 148 | 301 |  |  |
|  |  | 21.33\% | 35.06\% | 1.64 | 13.91\% | 28.29\% | 2.03 | 1.24 |
| NH | 483 | 47 | 8 |  | 394 | 30 |  |  |
|  |  | 9.73\% | 1.66\% | 0.17 | 81.57\% | 6.21\% | 0.08 | 0.45 |
| NJ | 2,577 | 322 | 418 |  | 851 | 902 |  |  |
|  |  | 12.50\% | 16.22\% | 1.30 | 33.02\% | 35.00\% | 1.06 | 0.82 |
| NM | 880 | 6 | 49 |  | 212 | 546 |  |  |
|  |  | 0.68\% | 5.57\% | 8.17 | 24.09\% | 62.05\% | 2.58 | 0.32 |
| NV | 658 | 120 | 185 |  | 50 | 299 |  |  |
|  |  | 18.24\% | 28.12\% | 1.54 | 7.60\% | 45.44\% | 5.98 | 3.88 |
| NY | 4,916 | 754 | 132 |  | 2,013 | 254 |  |  |
|  |  | 15.34\% | 2.69\% | 0.18 | 40.95\% | 5.17\% | 0.13 | 0.72 |
| OH | 3,631 | 262 | 444 |  | 1,028 | 1,825 |  |  |
|  |  | 7.22\% | 12.23\% | 1.69 | 28.31\% | 50.26\% | 1.78 | 1.05 |


| State | Total Schools | Non-Title I <br> Schools- No ID <br> \# and \% | Non-Title I Schools- With ID \# and \% | Ratio NonTitle I With ID /Non-Title I No ID | Title I Schools-No ID \# and \% | Title I <br> Schools-With ID \# and \% | Ratio Title I with ID /Title I No ID | Grand Ratio Title I Ratio/ Non-Title I Ratio |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| OK | 1,815 | 33 | 159 |  | 169 | 1,414 |  |  |
|  |  | 1.82\% | 8.76\% | 4.82 | 9.31\% | 77.91\% | 8.37 | 1.74 |
| OR | 1,283 | 169 | 496 |  | 167 | 403 |  |  |
|  |  | 13.17\% | 38.66\% | 2.93 | 13.02\% | 31.41\% | 2.41 | 0.82 |
| PA | 3,027 | 48 | 503 |  | 552 | 1,849 |  |  |
|  |  | 1.59\% | 16.62\% | 10.48 | 18.24\% | 61.08\% | 3.35 | 0.32 |
| RI | 308 | 63 | 2 |  | 235 | 3 |  |  |
|  |  | 20.45\% | 0.65\% | 0.03 | 76.30\% | 0.97\% | 0.01 | 0.40 |
| SC | 1,236 | 79 | 545 |  | 77 | 508 |  |  |
|  |  | 6.39\% | 44.09\% | 6.90 | 6.23\% | 41.10\% | 6.60 | 0.96 |
| SD | 688 | 67 | 25 |  | 539 | 47 |  |  |
|  |  | 9.74\% | 3.63\% | 0.37 | 78.34\% | 6.83\% | 0.09 | 0.23 |
| TN | 1,818 | 119 | 113 |  | 787 | 782 |  |  |
|  |  | 6.55\% | 6.22\% | 0.95 | 43.29\% | 43.01\% | 0.99 | 1.05 |
| TX | 8,616 | 410 | 1,119 |  | 891 | 6,137 |  |  |
|  |  | 4.76\% | 12.99\% | 2.73 | 10.34\% | 71.23\% | 6.89 | 2.52 |
| UT | 1,009 | 486 | 200 |  | 228 | 91 |  |  |
|  |  | 48.17\% | 19.82\% | 0.41 | 22.60\% | 9.02\% | 0.40 | 0.97 |
| VA | 1,971 | 170 | 1,055 |  | 24 | 713 |  |  |
|  |  | 8.63\% | 53.53\% | 6.21 | 1.22\% | 36.17\% | 29.71 | 4.79 |
| VT | 306 | 77 | 1 |  | 221 | 5 |  |  |
|  |  | 25.16\% | 0.33\% | 0.01 | 72.22\% | 1.63\% | 0.02 | 1.74 |
| WA | 2,305 | 352 | 416 |  | 547 | 951 |  |  |
|  |  | 15.27\% | 18.05\% | 1.18 | 23.73\% | 41.26\% | 1.74 | 1.47 |
| WI | 2,232 | 558 | 445 |  | 558 | 643 |  |  |
|  |  | 25.00\% | 19.94\% | 0.80 | 25.00\% | 28.81\% | 1.15 | 1.44 |
| WV | 720 | 127 | 253 |  | 95 | 241 |  |  |
|  |  | 17.64\% | 35.14\% | 1.99 | 13.19\% | 33.47\% | 2.54 | 1.27 |
| WY | 365 | 121 | 81 |  | 98 | 62 |  |  |
|  |  | 33.15\% | 22.19\% | 0.67 | 26.85\% | 16.99\% | 0.63 | 0.95 |

## APPENDIX D

Percent of Schools With No Reported Title I Status Nationally, by State, and DC, for 2011-2012, 2013-2014, and 2015-2016

| State | 2011-2012 No Report Title I Schools | 2013-2014 No Report Title I Schools | 2015-2016 No Report Title I Schools |
| :---: | :---: | :---: | :---: |
| National | 5.84\% | 2.90\% | 4.35\% |
| AK | 0.41\% | 0.81\% | 0.80\% |
| AL | 2.30\% | 5.37\% | 1.43\% |
| AR | 4.83\% | 3.78\% | 4.03\% |
| AZ | 3.28\% | 1.46\% | 3.59\% |
| CA | 9.42\% | 5.46\% | 10.64\% |
| CO | 3.31\% | 0.65\% | 0.59\% |
| CT | 2.76\% | 1.58\% | 0.57\% |
| DC | 5.71\% | 0.49\% | 0.45\% |
| DE | 12.50\% | 7.05\% | 2.13\% |
| FL | 2.01\% | 0.03\% | 0.10\% |
| GA | 3.14\% | 4.46\% | 4.24\% |
| HI | 0.00\% | 0.00\% | 0.00\% |
| IA | 6.10\% | 3.37\% | 1.47\% |
| ID | 2.56\% | 1.96\% | 1.11\% |
| IL | 5.33\% | 4.89\% | 3.21\% |
| IN | 2.19\% | 3.22\% | 0.80\% |
| KS | 5.11\% | 4.23\% | 3.54\% |
| KY | 0.71\% | 0.28\% | 0.21\% |
| LA | 12.91\% | 5.06\% | 2.41\% |
| MA | 2.78\% | 1.67\% | 2.40\% |
| MD | 2.42\% | 1.32\% | 1.46\% |
| ME | 3.36\% | 0.87\% | 0.17\% |
| MI | 3.06\% | 5.61\% | 0.86\% |
| MN | 2.60\% | 1.22\% | 0.74\% |
| MO | 2.03\% | 1.40\% | 2.02\% |
| MS | 2.16\% | 2.07\% | 1.12\% |
| MT | 0.77\% | 0.50\% | 0.61\% |
| NC | 2.25\% | 1.20\% | 1.15\% |
| ND | 1.07\% | 0.44\% | 0.42\% |
| NE | 3.62\% | 1.52\% | 1.41\% |
| NH | 3.15\% | 1.04\% | 0.83\% |
| NJ | 2.64\% | 1.26\% | 3.26\% |
| NM | 7.27\% | 3.44\% | 7.61\% |
| NV | 3.70\% | 0.92\% | 0.61\% |
| NY | 37.85\% | 2.62\% | 35.86\% |
| OH | 3.57\% | 1.66\% | 1.98\% |
| OK | 5.02\% | 3.37\% | 2.20\% |
| OR | 5.79\% | 5.04\% | 3.74\% |
| PA | 4.66\% | 3.30\% | 2.48\% |
| RI | 2.06\% | 100.00\% | 1.62\% |
| SC | 7.63\% | 2.85\% | 2.18\% |
| SD | 1.80\% | 1.89\% | 1.45\% |
| TN | 5.72\% | 1.72\% | 0.94\% |
| TX | 2.01\% | 0.36\% | 0.68\% |
| UT | 3.27\% | 1.11\% | 0.40\% |
| VA | 1.36\% | 0.41\% | 0.46\% |
| VT | 5.72\% | 2.28\% | 0.65\% |
| WA | 4.74\% | 5.04\% | 1.69\% |
| WI | 4.19\% | 1.56\% | 1.25\% |
| WV | 1.23\% | 0.41\% | 0.56\% |
| WY | 4.30\% | 1.94\% | 0.82\% |

## APPENDIXE

Number and Percentage of Students Identified With Giftedness Overall and by Title I Status,
With Difference Between Non-Title I and Title I Schools by State, 2015-2016

| State | Total Identified GT in Schools That ID | Total and Pe Non-Title | entified in That ID | Total and Percentage Identified in Title I Schools That ID |  | Ratio of Titile I ID to Non-Title IID |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | N | \% | N | \% |  |
| National | 3,255,232 | 1,370,703 | 0.13 | 1,852,729 | 0.08 | 0.58 |
| AK | 6,397 | 3,818 | 7.99 | 2,555 | 5.64 | 0.71 |
| AL | 51,695 | 21,314 | 12.76 | 30,079 | 7.83 | 0.61 |
| AR | 46,172 | 4,440 | 11.91 | 41,434 | 10.67 | 0.90 |
| AZ | 53,066 | 187 | 5.77 | 52,474 | 7.45 | 1.29 |
| CA | 424,890 | 157,246 | 12.71 | 259,125 | 8.81 | 0.69 |
| CO | 69,067 | 58,732 | 9.61 | 10,322 | 4.51 | 0.47 |
| CT | 11,906 | 7,554 | 8.74 | 4,349 | 4.83 | 0.55 |
| DC | 0 | 0 | 0.00 | 0 | 0.00 | 0.00 |
| DE | 3,613 | 1,029 | 10.94 | 2,584 | 7.05 | 0.64 |
| FL | 164,884 | 42,036 | 11.49 | 122,732 | 5.92 | 0.51 |
| GA | 189,320 | 111,708 | 17.49 | 77,142 | 7.37 | 0.42 |
| HI | 5,078 | 2,190 | 3.63 | 2,888 | 5.13 | 1.41 |
| IA | 44,078 | 18,860 | 11.87 | 25,213 | 8.09 | 0.68 |
| ID | 7,152 | 1,587 | 5.51 | 5,555 | 4.43 | 0.80 |
| IL | 68,929 | 23,191 | 15.49 | 44,770 | 12.83 | 0.83 |
| IN | 126,906 | 42,970 | 21.42 | 83,668 | 12.48 | 0.58 |
| KS | 12,643 | 4,112 | 4.12 | 8,530 | 2.68 | 0.65 |
| KY | 94,851 | 10,195 | 18.54 | 84,656 | 14.48 | 0.78 |
| LA | 29,600 | 7,268 | 9.89 | 21,836 | 4.00 | 0.40 |
| MA | 6,739 | 1,928 | 19.18 | 4,604 | 15.70 | 0.82 |
| MD | 151,245 | 92,685 | 30.12 | 58,294 | 18.70 | 0.62 |
| ME | 9,528 | 1,221 | 7.61 | 8,284 | 6.63 | 0.87 |
| MI | 19,641 | 14,060 | 16.12 | 5,581 | 7.93 | 0.49 |
| MN | 69,691 | 39,337 | 15.50 | 30,350 | 13.91 | 0.90 |
| M0 | 36,532 | 11,696 | 7.48 | 24,786 | 4.98 | 0.67 |
| MS | 33,207 | 8,255 | 12.22 | 24,827 | 8.79 | 0.72 |
| MT | 4,945 | 707 | 6.19 | 4,238 | 6.43 | 1.04 |
| NC | 170,771 | 71,311 | 19.54 | 99,430 | 9.25 | 0.47 |
| ND | 2,861 | 1,578 | 10.06 | 1,277 | 7.54 | 0.75 |
| NE | 35,778 | 28,513 | 17.38 | 7,261 | 7.29 | 0.42 |
| NH | 2,014 | 414 | 12.16 | 1,600 | 11.88 | 0.98 |
| NJ | 80,037 | 28,208 | 12.14 | 51,652 | 11.15 | 0.92 |
| NM | 16,239 | 3,395 | 11.77 | 12,375 | 4.82 | 0.41 |
| NV | 24,566 | 11,715 | 6.92 | 12,851 | 5.03 | 0.73 |
| NY | 43,802 | 8,818 | 10.73 | 18,990 | 13.03 | 1.21 |
| OH | 109,491 | 36,963 | 13.07 | 72,106 | 7.88 | 0.60 |
| OK | 96,726 | 17,212 | 22.56 | 79,426 | 14.02 | 0.62 |
| OR | 33,111 | 27,410 | 9.19 | 5,354 | 3.15 | 0.34 |
| PA | 60,033 | 21,731 | 5.96 | 38,190 | 3.73 | 0.63 |
| RI | 148 | 27 | 4.12 | 121 | 13.67 | 3.32 |
| SC | 118,013 | 95,467 | 22.28 | 22,283 | 8.55 | 0.38 |
| SD | 2,683 | 1,647 | 8.75 | 1,036 | 4.97 | 0.57 |
| TN | 15,229 | 5,518 | 5.66 | 9,688 | 2.20 | 0.39 |
| TX | 404,721 | 116,634 | 12.10 | 287,493 | 7.24 | 0.60 |
| UT | 31,031 | 26,020 | 14.72 | 5,011 | 7.37 | 0.50 |
| VA | 160,544 | 134,149 | 15.98 | 25,768 | 7.24 | 0.45 |
| VT | 121 | 4 | 0.62 | 117 | 8.83 | 14.22 |
| WA | 51,306 | 16,431 | 6.86 | 34,839 | 6.34 | 0.92 |
| WI | 45,219 | 25 | 9.40 | 45,194 | 7.84 | 0.83 |
| WV | 5,337 | 3,903 | 3.13 | 1,424 | 1.72 | 0.55 |
| WY | 3,676 | 2,512 | 8.51 | 1,164 | 6.52 | 0.77 |

## Appendix F

## Access to Identification as Gifted for All Students and Students Grouped by Race With Ratio Between These

## TABLE F1

2015-2016 Access to Identification as Gifted for All and American Indian/
Alaska Native Students With Ratio Between These

| State | Students in Schools That ID GT |  | AIAN Students in Schools That ID GT |  | Ratio of Race to All |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | \% | N | \% |  |
| National | 33,997,501 | 67.38 | 324,665 | 61.87 | 0.9183 |
| AK | 93,507 | 70.88 | 10,320 | 33.39 | 0.4711 |
| AL | 554,730 | 74.45 | 6,908 | 82.00 | 1.1015 |
| AR | 429,096 | 88.55 | 2,740 | 86.87 | 0.9810 |
| AZ | 716,942 | 63.30 | 23,123 | 43.02 | 0.6795 |
| CA | 4,249,918 | 67.78 | 18,981 | 51.99 | 0.7671 |
| CO | 840,019 | 93.38 | 5,942 | 92.05 | 0.9858 |
| CT | 176,984 | 33.01 | 374 | 24.61 | 0.7453 |
| DC |  |  |  |  |  |
| DE | 46,078 | 33.17 | 201 | 36.75 | 1.1079 |
| FL | 2,442,435 | 87.86 | 7,186 | 79.92 | 0.9096 |
| GA | 1,689,184 | 95.61 | 3,406 | 95.92 | 1.0032 |
| HI | 116,520 | 63.78 | 405 | 71.18 | 1.1160 |
| IA | 470,768 | 93.90 | 1,758 | 91.80 | 0.9777 |
| ID | 154,633 | 52.25 | 2,355 | 54.97 | 1.0521 |
| IL | 522,291 | 25.76 | 1,779 | 30.66 | 1.1900 |
| IN | 872,826 | 84.53 | 1,917 | 85.77 | 1.0147 |
| KS | 418,652 | 85.27 | 4,416 | 84.37 | 0.9895 |
| KY | 639,451 | 92.97 | 754 | 90.41 | 0.9724 |
| LA | 626,191 | 86.70 | 4,612 | 92.13 | 1.0626 |
| AA | -39,668 | 4.16 | 89 | 3.98 | 0.9562 |
| MD | 620,735 | 69.46 | 1,650 | 66.34 | 0.9552 |
| ME | 141,393 | 79.64 | 850 | 69.50 | 0.8727 |
| MI | 157,555 | 10.20 | 1,226 | 11.14 | 1.0926 |
| MN | 472,047 | 53.60 | 4,656 | 29.77 | 0.5555 |
| M0 | 655,279 | 70.51 | 2,834 | 75.94 | 1.0769 |
| MS | 351,591 | 71.57 | 887 | 73.55 | 1.0277 |
| MT | 77,322 | 52.46 | 5,055 | 28.57 | 0.5445 |
| NC | 1,441,276 | 92.88 | 19,640 | 92.15 | 0.9922 |
| ND | 32,657 | 29.57 | 3,740 | 36.12 | 1.2216 |
| NE | 263,692 | 83.19 | 2,529 | 56.55 | 0.6798 |
| NH | 16,872 | 9.24 | 36 | 6.92 | 0.7494 |
| NJ | 695,718 | 50.77 | 910 | 51.33 | 1.0110 |
| NM | 292,748 | 86.31 | 31,246 | 89.19 | 1.0334 |
| NV | 424,945 | 90.29 | 2,988 | 65.04 | 0.7204 |
| NY | 310,338 | 11.38 | 1,872 | 10.77 | 0.9458 |
| OH | 1,204,640 | 68.60 | 1,466 | 65.27 | 0.9515 |
| OK | 643,265 | 92.45 | 92,613 | 91.70 | 0.9919 |
| OR | 469,956 | 81.96 | 6,557 | 79.01 | 0.9641 |
| PA | 1,394,078 | 80.82 | 2,091 | 75.76 | 0.9374 |
| PH | 1,540 | 7.09 | 20 | 2.02 | 1.8585 |
| SC | 690,448 | 90.11 | 2,292 | 89.25 | 0.9905 |
| SD | 39,656 | 28.94 | 3,207 | 20.88 | 0.7216 |
| TN | 539,484 | 54.03 | 979 | 55.56 | 1.0283 |

## Appendices

| State | Students in Schools That ID GT |  | AIAN Students in Schools That ID GT |  | Ratio of Race to All |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | \% | $N$ | \% |  |
| TX | 4,943,581 | 93.24 | 18,004 | 92.60 | 0.9931 |
| UT | 244,720 | 36.81 | 2,172 | 30.29 | 0.8231 |
| VA | 1,196,120 | 93.08 | 3,463 | 93.67 | 1.0063 |
| VF | 1,969 | 2.37 | $z$ | 0.47 | 0.1958 |
| WA | 790,129 | 72.16 | 9,261 | 65.29 | 0.9048 |
| WI | 528,598 | 60.90 | 4,192 | 40.26 | 0.6611 |
| WV | 207,906 | 74.65 | 217 | 76.41 | 1.0236 |
| WY | 47,350 | 49.99 | 744 | 20.42 | 0.4085 |

Note. No students in the District of Columbia, and less than 5\% of students in Massachusetts, Rhode Island, and Vermont have access to identification rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

TABLE F2
2015-2016 Access to Identification as Gifted for All and Asian Students With Ratio Between These

| State | Students in Schools That ID GT |  | Asian Students in Schools That ID GT |  | Ratio of Race to All |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | \% | N | \% |  |
| National | 33,997,501 | 67.38 | 1,648,968 | 66.00 | 0.9795 |
| AK | 93,507 | 70.88 | 6,683 | 85.31 | 1.2035 |
| AL | 554,730 | 74.45 | 5,921 | 55.34 | 0.7433 |
| AR | 429,096 | 88.55 | 6,606 | 86.17 | 0.9731 |
| AZ | 716,942 | 63.30 | 17,097 | 53.38 | 0.8433 |
| CA | 4,249,918 | 67.78 | 475,692 | 68.48 | 1.0104 |
| CO | 840,019 | 93.38 | 26,814 | 96.28 | 1.0311 |
| CT | 176,984 | 33.01 | 10,085 | 37.68 | 1.1413 |
| DC |  |  |  |  |  |
| DE | 46,078 | 33.17 | 2,012 | 39.37 | 1.1869 |
| FL | 2,442,435 | 87.86 | 65,669 | 89.51 | 1.0187 |
| GA | 1,689,184 | 95.61 | 65,724 | 98.86 | 1.0340 |
| HI | 116,520 | 63.78 | 38,269 | 69.43 | 1.0886 |
| IA | 470,768 | 93.90 | 11,353 | 94.22 | 1.0034 |
| ID | 154,633 | 52.25 | 1,960 | 52.42 | 1.0033 |
| IL | 522,291 | 25.76 | 42,352 | 43.98 | 1.7070 |
| IN | 872,826 | 84.53 | 20,044 | 90.19 | 1.0670 |
| KS | 418,652 | 85.27 | 12,104 | 89.39 | 1.0483 |
| KY | 639,451 | 92.97 | 9,468 | 86.08 | 0.9259 |
| LA | 626,191 | 86.70 | 10,485 | 93.92 | 1.0832 |
| MA | 39,668 | 4.16 | 4,072 | 6.60 | 1.5857 |
| MD | 620,735 | 69.46 | 48,242 | 86.60 | 1.2468 |
| ME | 141,393 | 79.64 | 2,254 | 84.48 | 1.0609 |
| MI | 157,555 | 10.20 | 4,970 | 10.15 | 0.9957 |
| MN | 472,047 | 53.60 | 41,838 | 71.95 | 1.3424 |
| MO | 655,279 | 70.51 | 14,293 | 80.22 | 1.1377 |
| MS | 351,591 | 71.57 | 3,363 | 66.32 | 0.9267 |
| MT | 77,322 | 52.46 | 770 | 67.90 | 1.2942 |
| NC | 1,441,276 | 92.88 | 43,790 | 93.05 | 1.0018 |
| ND | 32,657 | 29.57 | 898 | 48.96 | 1.6558 |
| NE | 263,692 | 83.19 | 7,589 | 94.24 | 1.1328 |
| NH | 16,872 | 9.24 | 432 | 7.49 | 0.8109 |
| NJ | 695,718 | 50.77 | 81,773 | 60.95 | 1.2006 |
| NM | 292,748 | 86.31 | 3,646 | 92.89 | 1.0763 |
| NV | 424,945 | 90.29 | 24,232 | 94.13 | 1.0426 |
| NY | 310,338 | 11.38 | 37,127 | 15.37 | 1.3505 |
| OH | 1,204,640 | 68.60 | 28,736 | 78.26 | 1.1408 |
| OK | 643,265 | 92.45 | 12,792 | 95.57 | 1.0337 |
| OR | 469,956 | 81.96 | 21,140 | 92.70 | 1.1311 |


|  | Students in Schools That ID GT |  |  | Asian Students in Schools That ID GT |  |
| :--- | ---: | :---: | ---: | :---: | :---: |
| State | $\mathbf{N}$ | $\%$ | $\mathbf{N}$ | $\%$ |  |
| PA | $1,394,078$ | 80.82 | 47,749 | 75.62 | 0.9357 |
| RI | 1,540 | 7.09 | 7 | 0.16 | 0.1441 |
| SC | 690,448 | 90.11 | 10,788 | 92.39 | 1.0252 |
| SD | 39,656 | 28.94 | 959 | 41.43 | 1.4314 |
| TN | 539,484 | 54.03 | 12,714 | 67.61 | 1.2512 |
| TX | $4,943,581$ | 93.24 | 204,308 | 95.94 | 1.0290 |
| UT | 244,720 | 36.81 | 5,791 | 51.66 | 1.4037 |
| VA | $1,96,120$ | 93.08 | 74,117 | 86.90 | 0.9336 |
| VF | 1,969 | 2.37 | 21 | 1.13 | 0.4757 |
| WA | 790,129 | 72.16 | 56,898 | 70.64 | 0.9789 |
| WI | 528,598 | 60.90 | 23,491 | 71.54 | 1.1746 |
| WV | 207,906 | 74.65 | 1,471 | 81.72 | 1.0948 |
| WY | 47,350 | 49.99 | 359 | 46.38 | 0.9278 |

Note. No students in the District of Columbia, and less than 5\% of students in Massachusetts, Rhode Island, and Vermont have access to identification rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

TABLE F3
2015-2016 Access to Identification as Gifted for All and Black Students With Ratio Between These

| State | Students in Schools That ID GT |  | Black Students in Schools That ID GT |  | Ratio of Race to All |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | \% | N | \% |  |
| National | 33,997,501 | 67.38 | 5,115,049 | 65.65 | 0.9743 |
| AK | 93,507 | 70.88 | 3,708 | 89.28 | 1.2596 |
| AL | 554,730 | 74.45 | 183,180 | 73.46 | 0.9868 |
| AR | 429,096 | 88.55 | 5,272 | 86.74 | 0.9796 |
| AZ | 716,942 | 63.30 | 0,363 | 67.10 | 1.0600 |
| CA | 4,249,918 | 67.78 | 49,983 | 68.52 | 1.0110 |
| CO | 840,019 | 93.38 | 8,887 | 93.45 | 1.0008 |
| CT | 176,984 | 33.01 | 22,304 | 32.40 | 0.9814 |
| DC |  |  |  |  |  |
| DE | 46,078 | 33.17 | 13,809 | 31.86 | 0.9606 |
| FL | 2,442,435 | 87.86 | 28,593 | 84.28 | 0.9593 |
| GA | 1,689,184 | 95.61 | 07,563 | 92.96 | 0.9722 |
| HI | 116,520 | 63.78 | 2,544 | 72.09 | 1.1303 |
| IA | 470,768 | 93.90 | 26,280 | 92.16 | 0.9815 |
| ID | 154,633 | 52.25 | 1,582 | 50.19 | 0.9606 |
| IL | 522,291 | 25.76 | 66,099 | 18.83 | 0.7310 |
| IN | 872,826 | 84.53 | 93,425 | 73.91 | 0.8744 |
| KS | 418,652 | 85.27 | 28,729 | 81.38 | 0.9544 |
| KY | 639,451 | 92.97 | 61,235 | 84.07 | 0.9042 |
| LA | 626,191 | 86.70 | 253,526 | 79.61 | 0.9182 |
| HA | -39,668 | 4.16 | 6,323 | 7.57 | 7.8041 |
| MD | 620,735 | 69.46 | 207,249 | 66.71 | 0.9604 |
| ME | 141,393 | 79.64 | 5,469 | 90.20 | 1.1327 |
| MI | 157,555 | 10.20 | 19,704 | 7.07 | 0.6937 |
| MN | 472,047 | 53.60 | 62,447 | 67.83 | 1.2655 |
| M0 | 655,279 | 70.51 | 96,762 | 65.10 | 0.9233 |
| MS | 351,591 | 71.57 | 69,408 | 69.40 | 0.9697 |
| MT | 77,322 | 52.46 | 895 | 65.47 | 1.2479 |
| NC | 1,441,276 | 92.88 | 67,360 | 91.93 | 0.9897 |
| ND | 32,657 | 29.57 | 2,497 | 48.19 | 1.6295 |
| NE | 263,692 | 83.19 | 19,749 | 90.14 | 1.0836 |
| NH | 16,872 | 9.24 | 170 | 4.84 | 0.5238 |
| NJ | 695,718 | 50.77 | 1,124 | 37.27 | 0.7342 |

## Appendices

| State | Students in Schools That ID GT |  | Black Students in Schools That ID GT |  | Ratio of Race to All |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | \% | N | \% |  |
| NM | 292,748 | 86.31 | 5,751 | 85.68 | 0.9927 |
| NV | 424,945 | 90.29 | 6,823 | 95.10 | 1.0532 |
| NY | 310,338 | 11.38 | 7,925 | 7.90 | 0.6938 |
| OH | 1,204,640 | 68.60 | 56,681 | 55.59 | 0.8104 |
| OK | 643,265 | 92.45 | 8,355 | 94.17 | 1.0186 |
| OR | 469,956 | 81.96 | 2,113 | 89.43 | 1.0913 |
| PA | 1,394,078 | 80.82 | 21,541 | 47.50 | 0.5877 |
| PH | 1,540 | 1.09 | - | 0.08 | 0.0696 |
| SC | 690,448 | 90.11 | 32,789 | 88.00 | 0.9766 |
| SD | 39,656 | 28.94 | 2,593 | 65.93 | 2.2780 |
| TN | 539,484 | 54.03 | 00,646 | 44.67 | 0.8266 |
| TX | 4,943,581 | 93.24 | 12,528 | 92.14 | 0.9882 |
| UT | 244,720 | 36.81 | 4,493 | 48.81 | 1.3262 |
| VA | 1,196,120 | 93.08 | 74,172 | 93.09 | 1.0001 |
| VF | 7,969 | 2.37 | 15 | 0.75 | 0.3163 |
| WA | 790,129 | 72.16 | 4,629 | 71.09 | 0.9852 |
| WI | 528,598 | 60.90 | 8,166 | 71.01 | 1.1659 |
| WV | 207,906 | 74.65 | 9,128 | 73.85 | 0.9893 |
| WY | 47,350 | 49.99 | 453 | 41.91 | 0.8383 |

Note. No students in the District of Columbia, and less than $5 \%$ of students in Massachusetts, Rhode Island, and Vermont have access to identification rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

TABLE F4
2015-2016 Access to Identification as Gifted for All and Latinx Students With Ratio Between These

| State | Students in Schools that ID GT |  | Latinx Students in schools that ID GT |  | Ratio of Race to All |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | \% | N | \% |  |
| National | 33,997,501 | 67.38 | 9,219,809 | 70.77 | 1.0504 |
| AK | 93,507 | 70.88 | 7,753 | 88.13 | 1.2434 |
| AL | 554,730 | 74.45 | 37,320 | 74.32 | 0.9983 |
| AR | 429,096 | 88.55 | 51,854 | 86.98 | 0.9822 |
| AZ | 716,942 | 63.30 | 340,838 | 67.60 | 1.0678 |
| CA | 4,249,918 | 67.78 | 2,361,122 | 69.80 | 1.0299 |
| CO | 840,019 | 93.38 | 275,316 | 91.70 | 0.9820 |
| CT | 176,984 | 33.01 | 38,131 | 30.92 | 0.9365 |
| DC |  |  |  |  |  |
| DE | 46,078 | 33.17 | 8,600 | 38.97 | 1.1750 |
| FL | 2,442,435 | 87.86 | 785,767 | 89.43 | 1.0178 |
| GA | 1,689,184 | 95.61 | 249,510 | 97.21 | 1.0167 |
| HI | 116,520 | 63.78 | 13,001 | 59.08 | 0.9263 |
| IA | 470,768 | 93.90 | 47,456 | 92.54 | 0.9855 |
| ID | 154,633 | 52.25 | 27,360 | 53.72 | 1.0281 |
| IL | 522,291 | 25.76 | 120,076 | 23.22 | 0.9013 |
| IN | 872,826 | 84.53 | 96,497 | 84.56 | 1.0003 |
| KS | 418,652 | 85.27 | 70,738 | 76.24 | 0.8941 |
| KY | 639,451 | 92.97 | 34,268 | 83.49 | 0.8980 |
| LA | 626,191 | 86.70 | 39,241 | 91.91 | 1.0601 |
| MA | 39,668 | 4.16 | 8,420 | 4.92 | 1.1812 |
| MD | 620,735 | 69.46 | 113,005 | 79.95 | 1.1511 |
| ME | 141,393 | 79.64 | 2,817 | 80.90 | 1.0159 |
| MI | 157,555 | 10.20 | 9,468 | 8.49 | 0.8326 |
| MN | 472,047 | 53.60 | 46,242 | 60.32 | 1.1255 |
| M0 | 655,279 | 70.51 | 41,378 | 76.17 | 1.0802 |
| MS | 351,591 | 71.57 | 14,128 | 77.77 | 1.0867 |


| State | Students in Schools that ID GT |  | Latinx Students in schools that ID GT |  | Ratio of Race to All |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | \% | N | \% |  |
| MT | 77,322 | 52.46 | 3,406 | 56.97 | 1.0858 |
| NC | 1,441,276 | 92.88 | 240,132 | 95.11 | 1.0240 |
| ND | 32,657 | 29.57 | 1,403 | 29.85 | 1.0095 |
| NE | 263,692 | 83.19 | 48,504 | 84.87 | 1.0202 |
| NH | 16,872 | 9.24 | 638 | 6.50 | 0.7032 |
| NJ | 695,718 | 50.77 | 145,360 | 41.69 | 0.8212 |
| NM | 292,748 | 86.31 | 178,093 | 85.97 | 0.9960 |
| NV | 424,945 | 90.29 | 183,674 | 93.72 | 1.0380 |
| NY | 310,338 | 11.38 | 56,764 | 8.07 | 0.7092 |
| OH | 1,204,640 | 68.60 | 57,645 | 65.09 | 0.9488 |
| OK | 643,265 | 92.45 | 102,616 | 93.04 | 1.0063 |
| OR | 469,956 | 81.96 | 100,828 | 78.14 | 0.9535 |
| PA | 1,394,078 | 80.82 | 122,752 | 68.51 | 0.8477 |
| PH | 1,540 | 7.09 | 42 | 0.12 | 0.1134 |
| SC | 690,448 | 90.11 | 58,199 | 90.65 | 1.0060 |
| SD | 39,656 | 28.94 | 2,650 | 38.13 | 1.3175 |
| TN | 539,484 | 54.03 | 49,244 | 54.91 | 1.0162 |
| TX | 4,943,581 | 93.24 | 2,559,469 | 92.19 | 0.9887 |
| UT | 244,720 | 36.81 | 44,968 | 41.76 | 1.1346 |
| VA | 1,196,120 | 93.08 | 168,445 | 91.13 | 0.9790 |
| VF | 1,969 | 2.37 | 9 | 0.65 | 0.2748 |
| WA | 790,129 | 72.16 | 179,826 | 72.66 | 1.0069 |
| WI | 528,598 | 60.90 | 65,876 | 66.97 | 1.0997 |
| WV | 207,906 | 74.65 | 3,199 | 74.07 | 0.9922 |
| WY | 47,350 | 49.99 | 5,761 | 45.12 | 0.9026 |

Note. No students in the District of Columbia, and less than $5 \%$ of students in Massachusetts, Rhode Island, and Vermont have access to identification rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

TABLE F5
2015-2016 Access to Identification as Gifted for All and Native Hawaiian/ Pacific Islander Students With Ratio Between These

| State | Students in Schools That ID GT |  | NHPI Students in Schools That ID GT |  | Ratio of Race to All |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | \% | N | \% |  |
| National | 33,997,501 | 67.38 | 126,641 | 65.05 | 0.9655 |
| AK | 93,507 | 70.88 | 3,185 | 88.52 | 1.2489 |
| AL | 554,730 | 74.45 | 601 | 74.20 | 0.9966 |
| AR | 429,096 | 88.55 | 2,762 | 78.94 | 0.8914 |
| AZ | 716,942 | 63.30 | 2,538 | 67.73 | 1.0700 |
| CA | 4,249,918 | 67.78 | 26,732 | 67.32 | 0.9933 |
| CO | 840,019 | 93.38 | 1,943 | 92.92 | 0.9951 |
| CT | 176,984 | 33.01 | 162 | 28.22 | 0.8549 |
| DC |  |  |  |  |  |
| DE | 46,078 | 33.17 | 63 | 13.82 | 0.4165 |
| FL | 2,442,435 | 87.86 | 3,785 | 89.54 | 1.0191 |
| GA | 1,689,184 | 95.61 | 1,898 | 96.30 | 1.0072 |
| HI | 116,520 | 63.78 | 31,371 | 56.38 | 0.8840 |
| IA | 470,768 | 93.90 | 1,026 | 93.02 | 0.9907 |
| ID | 154,633 | 52.25 | 495 | 47.83 | 0.9153 |
| IL | 522,291 | 25.76 | 689 | 31.29 | 1.2145 |
| IN | 872,826 | 84.53 | 637 | 85.62 | 1.0129 |
| KS | 418,652 | 85.27 | 882 | 85.96 | 1.0082 |
| KY | 639,451 | 92.97 | 664 | 94.32 | 1.0145 |
| LA | 626,191 | 86.70 | 535 | 90.37 | 1.0423 |
| MA | -39,668 | 4.16 | 55 | 5.91 | 1.4193 |

## Appendices

| State | Students in Schools That ID GT |  | NHPI Students in Schools That ID GT |  | Ratio of Race to All |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | \% | N | \% |  |
| MD | 620,735 | 69.46 | 783 | 61.46 | 0.8848 |
| ME | 141,393 | 79.64 | 141 | 80.57 | 1.0117 |
| MI | 157,555 | 10.20 | 171 | 11.86 | 1.1630 |
| MN | 472,047 | 53.60 | 308 | 33.33 | 0.6219 |
| M0 | 655,279 | 70.51 | 1,854 | 80.71 | 1.1446 |
| MS | 351,591 | 71.57 | 198 | 74.44 | 1.0401 |
| MT | 77,322 | 52.46 | 206 | 58.03 | 1.1060 |
| NC | 1,441,276 | 92.88 | 1,756 | 90.24 | 0.9715 |
| ND | 32,657 | 29.57 | 123 | 34.65 | 1.1717 |
| NE | 263,692 | 83.19 | 394 | 82.43 | 0.9909 |
| NH | 16,872 | 9.24 | 17 | 10.06 | 1.0889 |
| NJ | 695,718 | 50.77 | 1,696 | 55.97 | 1.1026 |
| NM | 292,748 | 86.31 | 440 | 89.98 | 1.0425 |
| NV | 424,945 | 90.29 | 6,080 | 93.32 | 1.0336 |
| NY | 310,338 | 11.38 | 796 | 11.99 | 1.0530 |
| OH | 1,204,640 | 68.60 | 1,247 | 73.70 | 1.0743 |
| OK | 643,265 | 92.45 | 2,122 | 93.23 | 1.0084 |
| OR | 469,956 | 81.96 | 3,015 | 73.22 | 0.8934 |
| PA | 1,394,078 | 80.82 | 1,087 | 83.10 | 1.0283 |
| Pr | 1,540 | 7.09 | $z$ | 1.00 | 0.9190 |
| SC | 690,448 | 90.11 | 942 | 90.40 | 1.0032 |
| SD | 39,656 | 28.94 | 24 | 19.67 | 0.6797 |
| TN | 539,484 | 54.03 | 632 | 60.95 | 1.1279 |
| TX | 4,943,581 | 93.24 | 6,797 | 95.44 | 1.0236 |
| UT | 244,720 | 36.81 | 4,883 | 48.30 | 1.3124 |
| VA | 1,196,120 | 93.08 | 1,863 | 93.01 | 0.9992 |
| VF | 1,969 | 2.37 |  |  |  |
| WA | 790,129 | 72.16 | 8,415 | 73.87 | 1.0237 |
| WI | 528,598 | 60.90 | 435 | 58.31 | 0.9574 |
| WV | 207,906 | 74.65 | 108 | 77.70 | 1.0409 |
| WY | 47,350 | 49.99 | 83 | 46.11 | 0.9224 |

Note. No students in the District of Columbia, and less than $5 \%$ of students in Massachusetts, Rhode Island, and Vermont have access to identification rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

TABLE F6
2015-2016 Access to Identification as Gifted for All and Two or More Races Students With Ratio Between These

|  | Students in Schools That ID GT |  | TMR Students in Schools That ID GT |  |  |
| :--- | ---: | :---: | :---: | :---: | :---: |
| State | $\mathbf{N}$ | $\%$ | $\mathbf{N}$ | $\%$ | Ratio of Race to All |
| National | $33,997,501$ | 67.38 | $1,222,825$ | 70.02 | 1.0392 |
| AK | 93,507 | 70.88 | 11,799 | 85.88 | 1.2116 |
| AL | 554,730 | 74.45 | 8,715 | 72.14 | 0.9691 |
| AR | 429,096 | 88.55 | 9,969 | 87.29 | 0.9857 |
| AZ | 716,942 | 63.30 | 19,655 | 64.99 | 1.0267 |
| CA | $4,249,918$ | 67.78 | 161,300 | 66.32 | 0.9786 |
| CO | 840,019 | 93.38 | 32,618 | 94.41 | 1.0111 |
| CT | 176,984 | 33.01 | 4,860 | 32.25 | 0.9769 |
| DE |  |  |  |  |  |
| DE | 46,078 | 33.17 | 1,791 | 45.19 | 1.3626 |
| FL | $2,442,435$ | 87.86 | 82,323 | 88.22 | 1.0041 |
| GA | $1,689,184$ | 95.61 | 57,631 | 96.09 | 1.0050 |
| HI | 116,520 | 63.78 | 13,723 | 61.21 | 0.9598 |
| IA | 470,768 | 93.90 | 16,349 | 92.58 | 0.9860 |
| ID | 154,633 | 52.25 | 4,294 | 54.74 | 1.0476 |
| IL | 522,291 | 25.76 | 20,169 | 30.76 | 1.1939 |


|  | Students in Schools That ID GT |  | TMR Students in Schools That ID GT |  | Ratio of Race to All |
| :---: | :---: | :---: | :---: | :---: | :---: |
| State | N | \% | N | \% |  |
| IN | 872,826 | 84.53 | 39,938 | 83.32 | 0.9857 |
| KS | 418,652 | 85.27 | 20,893 | 86.15 | 1.0103 |
| KY | 639,451 | 92.97 | 21,107 | 90.02 | 0.9682 |
| LA | 626,191 | 86.70 | 13,114 | 89.58 | 1.0332 |
| MA | 39,668 | 4.16 | 1,412 | 3.79 | 0.9102 |
| MD | 620,735 | 69.46 | 27,238 | 71.00 | 1.0222 |
| ME | 141,393 | 79.64 | 2,853 | 79.03 | 0.9924 |
| MI | 157,555 | 10.20 | 5,550 | 10.75 | 1.0539 |
| MN | 472,047 | 53.60 | 20,200 | 60.85 | 1.1353 |
| M0 | 655,279 | 70.51 | 24,517 | 81.70 | 1.1586 |
| MS | 351,591 | 71.57 | 3,112 | 80.31 | 1.1222 |
| MT | 77,322 | 52.46 | 2,271 | 56.12 | 1.0696 |
| NC | 1,441,276 | 92.88 | 56,150 | 92.29 | 0.9936 |
| ND | 32,657 | 29.57 | 307 | 23.89 | 0.8079 |
| NE | 263,692 | 83.19 | 10,037 | 91.58 | 1.1009 |
| NH | 16,872 | 9.24 | 463 | 9.25 | 1.0016 |
| NJ | 695,718 | 50.77 | 15,394 | 57.43 | 1.1313 |
| NM | 292,748 | 86.31 | 5,240 | 94.50 | 1.0949 |
| NV | 424,945 | 90.29 | 26,274 | 92.57 | 1.0253 |
| NY | 310,338 | 11.38 | 7,511 | 13.68 | 1.2013 |
| OH | 1,204,640 | 68.60 | 56,995 | 68.00 | 0.9912 |
| OK | 643,265 | 92.45 | 53,247 | 92.72 | 1.0029 |
| OR | 469,956 | 81.96 | 27,633 | 83.54 | 1.0194 |
| PA | 1,394,078 | 80.82 | 42,256 | 71.16 | 0.8805 |
| PH | 1,540 | 7.09 | 60 | 1.02 | 0.9371 |
| SC | 690,448 | 90.11 | 24,791 | 91.32 | 1.0134 |
| SD | 39,656 | 28.94 | 1,661 | 35.10 | 1.2129 |
| TN | 539,484 | 54.03 | 12,074 | 57.28 | 1.0600 |
| TX | 4,943,581 | 93.24 | 106,841 | 94.58 | 1.0144 |
| UT | 244,720 | 36.81 | 4,380 | 27.27 | 0.7410 |
| VA | 1,196,120 | 93.08 | 61,865 | 93.76 | 1.0073 |
| VF | 1,969 | 2.37 | 15 | 0.67 | 0.2810 |
| WA | 790,129 | 72.16 | 58,400 | 71.10 | 0.9852 |
| WI | 528,598 | 60.90 | 17,273 | 64.59 | 1.0606 |
| WV | 207,906 | 74.65 | 5,772 | 80.82 | 1.0826 |
| WY | 47,350 | 49.99 | 785 | 39.69 | 0.7939 |

Note. No students in the District of Columbia, and less than $5 \%$ of students in Massachusetts, Rhode Island, and Vermont have access to identification rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

TABLE F7
2015-2016 Access to Identification as Gifted for All and White Students With Ratio Between These

| State | Students in Schools That ID GT |  | White Students in Schools That ID GT |  | Ratio of Race to All |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | \% | N | \% |  |
| National | 33,997,501 | 67.38 | 16,339,544 | 66.22 | 0.9828 |
| AK | 93,507 | 70.88 | 50,059 | 79.60 | 1.1229 |
| AL | 554,730 | 74.45 | 312,085 | 75.47 | 1.0137 |
| AR | 429,096 | 88.55 | 269,893 | 89.69 | 1.0129 |
| AZ | 716,942 | 63.30 | 273,328 | 60.96 | 0.9629 |
| CA | 4,249,918 | 67.78 | 956,108 | 63.36 | 0.9348 |
| CO | 840,019 | 93.38 | 458,499 | 94.18 | 1.0087 |
| CT | 176,984 | 33.01 | 101,068 | 33.69 | 1.0205 |
| BC |  |  |  |  |  |
| DE | 46,078 | 33.17 | 19,602 | 30.90 | 0.9316 |
| FL | 2,442,435 | 87.86 | 969,112 | 88.57 | 1.0081 |


| State | Students in Schools That ID GT |  | White Students in Schools That ID GT |  | Ratio of Race to All |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | N | \% | N | \% |  |
| GA | 1,689,184 | 95.61 | 703,452 | 97.10 | 1.0156 |
| HI | 116,520 | 63.78 | 17,207 | 73.49 | 1.1522 |
| IA | 470,768 | 93.90 | 366,546 | 94.27 | 1.0039 |
| ID | 154,633 | 52.25 | 116,587 | 51.83 | 0.9919 |
| IL | 522,291 | 25.76 | 271,127 | 27.40 | 1.0637 |
| IN | 872,826 | 84.53 | 620,368 | 86.29 | 1.0209 |
| KS | 418,652 | 85.27 | 280,890 | 88.10 | 1.0332 |
| KY | 639,451 | 92.97 | 511,955 | 95.18 | 1.0237 |
| LA | 626,191 | 86.70 | 304,678 | 92.42 | 1.0659 |
| MA | 39,668 | 4.16 | 19,297 | 3.24 | 0.7786 |
| MD | 620,735 | 69.46 | 222,568 | 64.73 | 0.9319 |
| ME | 141,393 | 79.64 | 127,009 | 79.22 | 0.9948 |
| MI | 157,555 | 10.20 | 116,466 | 11.18 | 1.0961 |
| MN | 472,047 | 53.60 | 296,356 | 49.06 | 0.9153 |
| M0 | 655,279 | 70.51 | 473,641 | 70.43 | 0.9988 |
| MS | 351,591 | 71.57 | 160,495 | 73.42 | 1.0260 |
| MT | 77,322 | 52.46 | 64,719 | 55.41 | 1.0561 |
| NC | 1,441,276 | 92.88 | 712,448 | 92.71 | 0.9982 |
| ND | 32,657 | 29.57 | 23,689 | 27.31 | 0.9237 |
| NE | 263,692 | 83.19 | 174,890 | 81.74 | 0.9826 |
| NH | 16,872 | 9.24 | 15,116 | 9.58 | 1.0367 |
| NJ | 695,718 | 50.77 | 369,461 | 57.88 | 1.1401 |
| NM | 292,748 | 86.31 | 68,332 | 85.08 | 0.9857 |
| NV | 424,945 | 90.29 | 134,874 | 84.20 | 0.9325 |
| NY | 310,338 | 11.38 | 168,343 | 13.77 | 1.2098 |
| OH | 1,204,640 | 68.60 | 901,870 | 71.51 | 1.0424 |
| OK | 643,265 | 92.45 | 321,520 | 92.01 | 0.9952 |
| OR | 469,956 | 81.96 | 298,670 | 82.38 | 1.0052 |
| PA | 1,394,078 | 80.82 | 1,056,602 | 90.83 | 1.1238 |
| PH | 1,540 | 7.09 | 1,400 | 7.67 | 1.5304 |
| SC | 690,448 | 90.11 | 360,647 | 91.30 | 1.0131 |
| SD | 39,656 | 28.94 | 28,562 | 27.57 | 0.9525 |
| TN | 539,484 | 54.03 | 363,195 | 56.69 | 1.0491 |
| TX | 4,943,581 | 93.24 | 1,435,634 | 95.17 | 1.0207 |
| UT | 244,720 | 36.81 | 178,033 | 35.36 | 0.9608 |
| VA | 1,196,120 | 93.08 | 612,195 | 94.38 | 1.0139 |
| VF | 1,969 | 2.37 | 1,907 | 2.55 | 1.0720 |
| WA | 790,129 | 72.16 | 442,700 | 72.52 | 1.0049 |
| WI | 528,598 | 60.90 | 359,165 | 58.22 | 0.9559 |
| WV | 207,906 | 74.65 | 188,011 | 74.47 | 0.9976 |
| WY | 47,350 | 49.99 | 39,165 | 52.72 | 1.0545 |

Note. No students in the District of Columbia, and less than 5\% of students in Massachusetts, Rhode Island, and Vermont have access to identification rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

## APPENDIX G

2015-2016 Access to Identification as Gifted in all Schools by State by Locale with Percentages, and Ratios

| State | \% of Students in Schools That ID GT | \% of City Students in Schools That ID GT | Ratio of City to All | \% of Suburb Students in Schools That ID GT | Ratio of Suburb to All | \% of Town Students in Schools That ID GT | Ratio of Town to All | \% of Rural Students in Schools That ID GT | Ratio of Rural to all |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AK | 70.88 | 97.43 | 1.37 | 61.39 | 0.87 | 77.86 | 1.10 | 36.87 | 0.52 |
| AL | 74.45 | 63.26 | 0.85 | 72.20 | 0.97 | 75.66 | 1.02 | 82.14 | 1.10 |
| AR | 88.55 | 81.13 | 0.92 | 93.98 | 1.06 | 86.03 | 0.97 | 95.25 | 1.08 |
| AZ | 63.30 | 68.39 | 1.08 | 69.32 | 1.10 | 37.41 | 0.59 | 53.35 | 0.84 |
| CA | 67.78 | 69.88 | 1.03 | 76.10 | 1.12 | 44.24 | 0.65 | 53.00 | 0.78 |
| CO | 93.38 | 95.14 | 1.02 | 94.88 | 1.02 | 89.01 | 0.95 | 88.20 | 0.94 |
| CT | 33.01 | 30.35 | 0.92 | 37.15 | 1.13 | 14.83 | 0.45 | 25.39 | 0.77 |
| DE | 33.17 | 55.48 | 1.67 | 37.06 | 1.12 | 29.73 | 0.90 | 13.18 | 0.40 |
| FL | 87.86 | 84.30 | 0.96 | 88.34 | 1.01 | 91.18 | 1.04 | 92.29 | 1.05 |
| GA | 95.61 | 88.92 | 0.93 | 99.04 | 1.04 | 94.59 | 0.99 | 96.28 | 1.01 |
| HI | 63.78 | 60.75 | 0.95 | 67.85 | 1.06 | 64.54 | 1.01 | 50.05 | 0.78 |
| IA | 93.90 | 94.89 | 1.01 | 93.66 | 1.00 | 91.07 | 0.97 | 95.84 | 1.02 |
| ID | 52.25 | 57.52 | 1.10 | 48.94 | 0.94 | 59.50 | 1.14 | 44.28 | 0.85 |
| IL | 25.76 | 20.48 | 0.79 | 34.99 | 1.36 | 11.19 | 0.43 | 12.78 | 0.50 |
| IN | 84.53 | 77.79 | 0.92 | 88.19 | 1.04 | 86.18 | 1.02 | 87.54 | 1.04 |
| KS | 85.27 | 79.82 | 0.94 | 98.27 | 1.15 | 86.31 | 1.01 | 84.67 | 0.99 |
| KY | 92.97 | 70.72 | 0.76 | 95.15 | 1.02 | 96.92 | 1.04 | 98.84 | 1.06 |
| LA | 86.70 | 79.63 | 0.92 | 94.13 | 1.09 | 82.10 | 0.95 | 89.67 | 1.03 |
| MD | 69.46 | 49.65 | 0.71 | 78.94 | 1.14 | 59.05 | 0.85 | 60.27 | 0.87 |
| ME | 79.64 | 89.76 | 1.13 | 81.25 | 1.02 | 77.34 | 0.97 | 77.51 | 0.97 |
| MI | 10.20 | 7.66 | 0.75 | 12.63 | 1.24 | 13.05 | 1.28 | 7.15 | 0.70 |
| MN | 53.60 | 75.53 | 1.41 | 71.14 | 1.33 | 31.35 | 0.58 | 26.79 | 0.50 |
| MO | 70.51 | 69.63 | 0.99 | 83.96 | 1.19 | 67.93 | 0.96 | 56.72 | 0.80 |
| MS | 71.57 | 85.81 | 1.20 | 69.77 | 0.97 | 63.57 | 0.89 | 73.82 | 1.03 |
| MT | 52.46 | 77.98 | 1.49 | 95.03 | 1.81 | 56.24 | 1.07 | 29.58 | 0.56 |
| NC | 92.88 | 91.52 | 0.99 | 93.66 | 1.01 | 88.59 | 0.95 | 94.89 | 1.02 |
| ND | 29.57 | 56.64 | 1.92 | 28.67 | 0.97 | 35.50 | 1.20 | 9.27 | 0.31 |
| NE | 83.19 | 95.63 | 1.15 | 92.26 | 1.11 | 78.13 | 0.94 | 62.85 | 0.76 |
| NH | 9.24 | 0.42 | 0.04 | 16.18 | 1.75 | 4.06 | 0.44 | 7.70 | 0.83 |
| NJ | 50.77 | 27.08 | 0.53 | 54.20 | 1.07 | 43.29 | 0.85 | 51.06 | 1.01 |
| NM | 86.31 | 95.96 | 1.11 | 90.56 | 1.05 | 76.59 | 0.87 | 83.57 | 0.97 |
| NV | 90.29 | 94.51 | 1.05 | 98.49 | 1.09 | 46.32 | 0.51 | 64.74 | 0.72 |
| NY | 11.38 | 10.04 | 0.88 | 9.19 | 0.81 | 33.94 | 2.98 | 6.72 | 0.59 |
| OH | 68.60 | 56.38 | 0.82 | 72.44 | 1.06 | 71.39 | 1.04 | 70.37 | 1.03 |
| OK | 92.45 | 97.90 | 1.06 | 96.07 | 1.04 | 88.20 | 0.95 | 89.59 | 0.97 |
| OR | 81.96 | 82.99 | 1.01 | 84.84 | 1.04 | 82.91 | 1.01 | 74.83 | 0.91 |
| PA | 80.82 | 38.53 | 0.48 | 91.83 | 1.14 | 91.13 | 1.13 | 94.30 | 1.17 |
| SC | 90.11 | 89.36 | 0.99 | 93.32 | 1.04 | 85.33 | 0.95 | 89.58 | 0.99 |
| SD | 28.94 | 60.36 | 2.09 | 0.00 | 0.00 | 26.80 | 0.93 | 12.39 | 0.42 |
| TN | 54.03 | 48.43 | 0.90 | 54.87 | 1.02 | 62.72 | 1.16 | 54.92 | 1.02 |
| TX | 93.24 | 89.99 | 0.97 | 96.12 | 1.03 | 94.07 | 1.01 | 96.12 | 1.03 |
| UT | 36.81 | 38.25 | 1.04 | 38.63 | 1.05 | 30.06 | 0.82 | 30.34 | 0.82 |
| VA | 93.08 | 93.32 | 1.00 | 90.07 | 0.97 | 98.45 | 1.06 | 97.14 | 1.04 |
| WA | 72.16 | 78.19 | 1.08 | 67.35 | 0.93 | 73.40 | 1.02 | 71.93 | 1.00 |
| WI | 60.90 | 75.77 | 1.24 | 68.45 | 1.12 | 52.47 | 0.86 | 39.89 | 0.65 |
| WV | 74.65 | 90.59 | 1.21 | 87.76 | 1.18 | 69.88 | 0.94 | 65.12 | 0.87 |
| WY | 49.99 | 49.59 | 0.99 | 52.29 | 1.05 | 53.77 | 1.08 | 45.16 | 0.90 |

Note. States in bold have mandates regarding the identification and service of students with gifts and talents.
Note. A blank cell indicates there are no schools designated with this locale.
Note, District of Columbia, Massachusetts, Rhode Island, and Vermont are not included in this table because fewer than $5 \%$ of their students have access to identification.

## Appendix H <br> National Trends in Representation as Gifted for Students Grouped by Race and School Title I Status



FIGURE H1. National Trends in Representation as Gifted for AIAN Students by Title I Status


FIGURE H2. National Trends in Representation as Gifted for Asian Students by Title I Status

BLACK NATIONAL RIs


FIGURE H3. National Trends in Representation as Gifted for Black Students by Title I Status

## LATINX NATIONAL RIs



FIGURE H4. National Trends in Representation as Gifted for Latinx Students by Title I Status

## NATIVE HAWAIIAN OTHER PACIFIC ISLANDER NATIONAL RIs


-In All Schools ■In Schools with No Title I \& GT Programs In Inchools with Title I \& GT Programs
F/GURE H5. National Trends in Representation as Gifted for Native Hawaiian/ Pacific Islander Students by Title I Status

TWO OR MORE RACES NATIONAL RIS

-In All Schools ■In Schools with No Title I \& GT Programs -In Schools with Title I \& GT Programs

F/GURE H6. National Trends in Representation as Gifted for Students with Two or More Races by Title I Status


FIGURE H7. National Trends in Representation as Gifted for White Students by Title I Status

# Appendix I <br> 2015-2016 Representation Indicies and Enrollment Percentages by School Locale and Title I Status With Students Grouped by Race 

TABLE I1
2015-2016 American Indian/Alaska Native Representation Indices in All, Non-
Title I, and Title I Schools by Locale for Nation and States

| State | AIAN City RI |  |  | AIAN Suburb RI |  |  | AIAN Town RI |  |  | AIAN Rural RI |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | All | Non-Title I | Title I |
| National | 0.62 | 0.53 | 0.69 | 0.76 | 0.73 | 0.84 | 1.07 | 0.65 | 1.19 | 1.04 | 0.89 | 1.19 |
| AK | 0.39 | 0.34 | 0.44 | 0.44 | 0.54 | 0.23 | 0.31 | 0.32 | 0.32 | 0.27 | 0.32 | 0.33 |
| AL | 1.38 | 1.20 | 1.29 | 0.88 | 0.85 | 0.81 | 1.18 | 0.74 | 1.39 | 1.31 | 1.09 | 1.48 |
| AR | 0.78 | 0.44 | 0.81 | 0.71 | 1.01 | 0.67 | 0.51 | 0.15 | 0.55 | 0.74 | 0.62 | 0.75 |
| AZ | 0.49 | 1.28 | 0.49 | 0.51 |  | 0.51 | 1.28 |  | 1.27 | 0.39 | 0.00 | 0.39 |
| CA | 0.85 | 0.75 | 0.89 | 0.73 | 0.63 | 0.81 | 0.78 | 0.73 | 0.80 | 0.52 | 0.50 | 0.56 |
| CO | 0.65 | 0.63 | 0.78 | 0.48 | 0.46 | 0.87 | 0.25 | 0.27 | 0.17 | 0.43 | 0.53 | 0.36 |
| CT | 1.26 | 1.94 | 0.00 | 0.50 | 0.75 | 0.38 | 0.00 |  | 0.00 | 1.04 | 1.04 | 1.08 |
| DC |  |  |  |  |  |  |  |  |  |  |  |  |
| DE | 0.79 | 0.89 | 0.76 | 2.32 | 1.31 | 2.87 | 1.84 |  | 1.84 | 1.13 | 1.37 | 2.97 |
| FL | 0.86 | 0.75 | 0.87 | 0.76 | 0.69 | 0.79 | 1.53 | 0.00 | 1.60 | 0.60 | 0.54 | 0.65 |
| GA | 0.81 | 0.69 | 0.87 | 0.91 | 0.83 | 1.02 | 0.87 | 0.69 | 0.95 | 0.72 | 0.82 | 0.57 |
| HI | 0.51 | 0.00 | 1.06 | 0.53 | 0.51 | 0.60 | 1.35 | 0.00 | 1.39 | 0.45 | 0.00 | 1.38 |
| IA | 0.56 | 0.37 | 0.68 | 0.38 | 0.37 | 0.40 | 0.45 | 0.61 | 0.42 | 0.35 | 0.25 | 0.43 |
| ID | 0.31 | 0.18 | 0.37 | 0.64 | 0.75 | 0.61 | 0.22 | 0.00 | 0.23 | 0.46 | 0.00 | 0.46 |
| IL | 0.61 | 0.59 | 0.66 | 0.49 | 0.35 | 0.52 | 0.84 | 0.00 | 0.88 | 0.11 | 0.00 | 0.15 |
| IN | 0.89 | 0.60 | 0.99 | 0.62 | 0.64 | 0.58 | 0.54 | 0.22 | 0.59 | 0.63 | 0.57 | 0.65 |
| KS | 0.73 | 0.86 | 0.72 | 0.39 | 0.14 | 0.56 | 0.80 | 0.00 | 0.86 | 0.47 | 0.59 | 0.45 |
| KY | 0.58 | 0.00 | 0.62 | 0.89 | 1.12 | 0.85 | 0.83 | 0.00 | 0.86 | 0.70 | 0.37 | 0.72 |
| LA | 0.57 | 0.70 | 0.58 | 0.81 | 1.43 | 0.77 | 0.64 | 0.00 | 0.70 | 0.62 | 0.51 | 0.71 |
| AA | 0.89 | 7.06 | 0.47 | 7.04 | 0.71 | 7.29 |  |  |  | 0.00 |  | 0.00 |
| MD | 0.78 | 0.76 | 0.79 | 0.56 | 0.49 | 0.66 | 0.66 | 0.77 | 0.00 | 0.53 | 0.54 | 0.39 |
| ME | 0.63 | 0.00 | 0.70 | 0.70 | 0.52 | 0.78 | 0.62 | 0.00 | 0.63 | 0.31 | 0.83 | 0.26 |
| MI | 1.21 | 1.11 | 1.45 | 0.51 | 0.50 | 0.62 | 0.71 | 0.92 | 0.54 | 0.51 | 0.82 | 0.64 |
| MN | 0.63 | 0.41 | 0.62 | 0.54 | 0.59 | 0.46 | 0.31 | 0.52 | 0.05 | 0.51 | 0.13 | 0.86 |
| MO | 0.42 | 0.49 | 0.45 | 0.69 | 0.90 | 0.56 | 0.68 | 0.47 | 0.71 | 1.06 | 0.60 | 1.16 |
| MS | 0.89 | 0.00 | 0.93 | 1.30 | 1.50 | 1.23 | 0.62 | 0.34 | 0.68 | 0.48 | 0.42 | 0.49 |
| MT | 0.39 | 0.69 | 0.35 | 0.68 |  | 0.68 | 0.44 | 0.46 | 0.45 | 1.07 | 0.00 | 1.02 |
| NC | 0.61 | 0.67 | 0.62 | 0.71 | 0.79 | 0.83 | 0.65 | 0.94 | 0.67 | 0.57 | 0.59 | 0.64 |
| ND | 0.28 | 0.50 | 0.05 | 0.26 | 0.13 | 0.36 | 0.51 | 0.55 | 0.31 | 1.09 | 0.00 | 1.13 |
| NE | 0.36 | 0.34 | 0.56 | 0.54 | 0.51 | 0.92 | 0.50 | 0.48 | 0.55 | 0.51 | 0.47 | 0.71 |
| NH |  |  |  | 0.00 | 0.00 | 0.00 | 0.00 |  | 0.00 | 0.84 | 0.00 | 0.96 |
| NJ | 0.75 | 0.00 | 0.86 | 0.67 | 0.56 | 0.73 | 0.00 | 0.00 | 0.00 | 0.59 | 1.61 | 0.38 |
| NM | 0.40 | 0.27 | 0.45 | 0.38 | 0.22 | 0.42 | 0.81 | 0.36 | 0.89 | 0.75 | 0.56 | 0.90 |
| NV | 0.74 | 0.70 | 0.76 | 0.81 | 0.76 | 0.77 | 0.44 | 0.47 | 0.55 | 0.43 | 0.48 | 0.31 |
| NY | 0.79 | 0.00 | 0.75 | 0.57 |  | 0.57 | 0.92 | 1.27 | 0.00 | 1.26 | 0.00 | 1.27 |
| OH | 0.83 | 0.00 | 0.98 | 0.74 | 0.72 | 0.75 | 0.42 | 0.23 | 0.49 | 0.57 | 0.42 | 0.64 |
| OK | 0.99 | 0.88 | 1.01 | 0.81 | 0.87 | 0.80 | 0.98 | 1.02 | 0.98 | 1.02 | 0.97 | 1.04 |
| OR | 0.44 | 0.42 | 0.66 | 0.38 | 0.37 | 0.49 | 0.64 | 0.64 | 0.56 | 0.39 | 0.46 | 0.48 |
| PA | 0.79 | 0.00 | 0.90 | 0.56 | 0.59 | 0.56 | 0.57 | 0.00 | 0.70 | 0.50 | 0.27 | 0.59 |
| PH |  |  |  | 0.00 |  | 0.00 |  |  |  | 1.25 | 0.00 | 7.73 |
| SC | 0.46 | 0.47 | 0.45 | 0.64 | 0.64 | 0.70 | 0.91 | 0.85 | 0.98 | 0.66 | 0.65 | 0.84 |
| SD | 0.17 | 0.26 | 0.00 |  |  |  | 0.08 | 0.33 | 0.06 | 0.33 | 1.50 | 0.53 |
| TN | 0.78 | 1.51 | 0.39 | 0.35 | 0.18 | 0.58 | 0.99 | 0.00 | 1.22 | 1.01 | 0.00 | 1.22 |
| TX | 0.72 | 0.59 | 0.76 | 0.68 | 0.66 | 0.71 | 0.77 | 0.81 | 0.76 | 0.83 | 0.68 | 0.87 |
| UT | 0.23 | 0.21 | 0.34 | 0.76 | 0.84 | 0.76 | 0.74 | 0.64 | 0.73 | 0.48 | 1.13 | 0.30 |
| VA | 0.96 | 0.90 | 1.17 | 0.62 | 0.59 | 0.90 | 0.61 | 0.57 | 0.73 | 0.60 | 0.55 | 0.71 |
| VF |  |  |  |  |  |  |  |  |  | 0.00 | 0.00 | 0.00 |
| WA | 0.36 | 0.35 | 0.37 | 0.50 | 0.57 | 0.47 | 0.43 | 0.42 | 0.44 | 0.49 | 0.51 | 0.48 |
| WI | 0.55 | 0.23 | 0.06 | 0.57 | 0.75 | 0.05 | 0.34 | 0.16 | 0.03 | 0.70 | 0.48 | 0.06 |
| WV | 0.39 | 0.45 | 0.00 | 1.37 | 1.77 | 0.00 | 0.00 | 0.00 | 0.00 | 0.84 | 0.00 | 2.04 |
| WY | 0.00 | 0.00 | 0.00 | 0.00 |  | 0.00 | 0.54 | 0.58 | 0.50 | 1.98 | 1.80 | 0.00 |

Note. A blank indicates there are no students in that setting from this group.
Note. No students in the District of Columbia, and less than $5 \%$ of students in Massachusetts, Rhode Island, and Vermont have access to identification
rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

TABLE I2
2015-2016 Asian Representation Indices in All, Non-Title I, and Title I Schools by Locale for Nation and States

|  | Asian City RI |  |  | Asian Suburb RI |  |  | Asian Town RI |  |  | Asian Rural RI |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State | All | Non-Title I | Title I | All | Non-Title I | Title I | All | Non-Title I | Title 1 | All | Non-Title I | Title I |
| National | 1.99 | 1.57 | 2.08 | 1.95 | 1.69 | 2.00 | 1.75 | 1.69 | 1.72 | 1.99 | 1.72 | 1.81 |
| AK | 0.93 | 0.81 | 1.07 | 1.37 | 1.18 | 2.06 | 0.91 | 0.91 | 0.98 | 0.72 | 0.69 | 0.45 |
| AL | 2.45 | 1.22 | 3.51 | 1.71 | 1.38 | 2.16 | 1.72 | 1.35 | 1.90 | 1.93 | 1.42 | 2.23 |
| AR | 1.51 | 1.84 | 1.44 | 1.57 | 1.41 | 1.61 | 1.15 | 1.22 | 1.15 | 1.34 | 1.35 | 1.31 |
| AZ | 2.14 | 1.82 | 2.15 | 2.39 | 0.93 | 2.42 | 1.93 |  | 2.00 | 1.79 | 0.00 | 1.79 |
| CA | 1.88 | 1.53 | 2.03 | 1.96 | 1.72 | 1.94 | 1.16 | 0.89 | 1.24 | 1.77 | 1.42 | 2.15 |
| CO | 1.56 | 1.48 | 1.64 | 1.60 | 1.50 | 1.94 | 1.51 | 1.47 | 1.51 | 1.58 | 1.33 | 2.42 |
| CT | 1.76 | 1.52 | 2.10 | 1.88 | 1.86 | 1.69 | 5.25 | 0.00 | 5.63 | 1.73 | 1.81 | 1.00 |
| DC |  |  |  |  |  |  |  |  |  |  |  |  |
| DE | 3.15 | 2.15 | 3.50 | 2.02 | 2.16 | 2.00 | 2.30 |  | 2.30 | 2.16 | 1.33 | 4.19 |
| FL | 2.37 | 1.84 | 2.43 | 2.11 | 1.82 | 2.04 | 1.75 | 3.26 | 1.52 | 2.76 | 2.24 | 2.47 |
| GA | 2.53 | 1.53 | 2.60 | 2.19 | 1.75 | 2.09 | 1.77 | 1.49 | 1.84 | 2.03 | 1.75 | 2.07 |
| HI | 1.32 | 1.45 | 1.22 | 1.24 | 1.19 | 1.29 | 1.56 | 1.04 | 1.69 | 1.76 | 1.85 | 1.52 |
| IA | 1.34 | 1.56 | 1.19 | 1.83 | 1.87 | 1.75 | 1.20 | 1.49 | 1.10 | 1.41 | 1.47 | 1.20 |
| ID | 3.00 | 3.23 | 2.27 | 0.97 | 0.88 | 1.01 | 1.79 | 4.40 | 1.43 | 1.19 | 1.50 | 1.17 |
| IL | 1.53 | 1.31 | 1.64 | 1.67 | 1.57 | 1.74 | 1.42 | 0.00 | 1.43 | 1.29 | 1.53 | 1.05 |
| IN | 1.67 | 1.68 | 1.26 | 1.56 | 1.48 | 1.48 | 1.44 | 1.16 | 1.47 | 1.19 | 1.60 | 0.89 |
| KS | 2.26 | 2.39 | 1.95 | 2.13 | 2.24 | 1.87 | 1.74 | 1.49 | 1.77 | 2.56 | 2.60 | 2.01 |
| KY | 1.67 | 0.90 | 1.75 | 1.70 | 1.73 | 1.54 | 1.78 | 1.40 | 1.80 | 1.41 | 1.45 | 1.39 |
| LA | 3.32 | 2.13 | 3.67 | 2.08 | 1.91 | 2.12 | 1.95 | 1.66 | 1.98 | 2.78 | 2.19 | 2.75 |
| MA | 0.61 | 0.60 | 0.66 | 1.46 | 2.09 | 7.25 |  |  |  | 0.80 | 0.00 | 1.44 |
| MD | 1.43 | 1.17 | 1.59 | 1.88 | 1.63 | 2.11 | 3.12 | 2.12 | 1.89 | 2.68 | 2.36 | 3.06 |
| ME | 1.26 | 4.10 | 1.10 | 1.58 | 1.70 | 1.59 | 1.71 | 2.00 | 1.71 | 1.77 | 2.57 | 1.57 |
| MI | 2.55 | 2.14 | 1.68 | 2.31 | 2.20 | 1.88 | 2.24 | 3.05 | 1.42 | 1.33 | 1.19 | 1.49 |
| MN | 1.52 | 1.22 | 1.50 | 1.23 | 1.24 | 1.27 | 1.13 | 1.21 | 1.04 | 1.84 | 1.82 | 0.91 |
| M0 | 2.08 | 2.10 | 1.72 | 2.47 | 2.27 | 2.55 | 1.95 | 1.98 | 1.90 | 2.27 | 2.20 | 2.05 |
| MS | 1.58 | 0.39 | 1.65 | 1.50 | 1.32 | 1.71 | 2.76 | 1.57 | 3.12 | 1.96 | 1.57 | 2.11 |
| MT | 1.41 | 0.73 | 1.57 | 3.45 |  | 3.45 | 1.11 |  | 1.15 | 1.50 | 0.00 | 1.62 |
| NC | 1.94 | 1.44 | 2.15 | 1.78 | 1.40 | 1.48 | 1.76 | 1.47 | 1.78 | 1.47 | 1.15 | 1.45 |
| ND | 1.73 | 2.12 | 0.64 | 1.26 | 1.63 | 1.08 | 0.67 | 1.00 | 0.25 | 0.86 | 1.21 | 0.00 |
| NE | 1.28 | 1.36 | 0.93 | 1.43 | 1.35 | 1.89 | 1.70 | 1.52 | 1.99 | 1.27 | 1.17 | 0.98 |
| NH | 1.07 |  | 1.07 | 2.32 | 2.07 | 2.36 | 2.17 |  | 2.17 | 1.70 | 0.00 | 2.14 |
| NJ | 1.87 | 1.14 | 2.07 | 1.82 | 1.81 | 1.82 | 2.29 | 1.32 | 2.43 | 1.73 | 1.53 | 1.73 |
| NM | 2.12 | 1.41 | 2.09 | 2.63 | 1.80 | 1.97 | 3.88 | 2.16 | 3.88 | 2.67 | 1.84 | 2.44 |
| NV | 1.62 | 1.27 | 2.10 | 1.63 | 1.24 | 1.86 | 1.39 | 1.17 | 1.98 | 1.22 | 1.19 | 1.23 |
| NY | 1.51 | 0.74 | 0.90 | 1.24 |  | 1.24 | 1.65 | 1.61 | 2.38 | 1.97 | 1.47 | 2.23 |
| OH | 1.44 | 1.62 | 1.28 | 1.88 | 1.65 | 1.95 | 2.06 | 1.37 | 2.29 | 2.15 | 1.92 | 1.90 |
| OK | 2.01 | 1.70 | 2.03 | 1.66 | 1.33 | 1.76 | 1.96 | 1.68 | 1.92 | 1.41 | 0.98 | 1.46 |
| OR | 1.61 | 1.56 | 1.96 | 2.86 | 2.60 | 2.39 | 1.95 | 1.87 | 1.77 | 3.93 | 3.46 | 2.67 |
| PA | 1.53 | 1.12 | 1.55 | 2.35 | 2.15 | 2.40 | 2.75 | 3.96 | 2.44 | 3.16 | 2.86 | 2.42 |
| Rt |  |  |  | 1.03 |  | 1.03 |  |  |  | 0.00 | 0.00 |  |
| SC | 1.69 | 1.46 | 1.95 | 1.53 | 1.43 | 1.51 | 2.10 | 1.63 | 2.67 | 2.04 | 1.63 | 2.47 |
| SD | 1.29 | 1.37 | 1.45 |  |  |  | 2.81 | 3.45 | 2.28 | 2.92 | 3.59 | 0.48 |
| TN | 2.31 | 1.79 | 2.38 | 2.31 | 1.93 | 2.22 | 2.58 | 2.75 | 1.96 | 3.15 | 1.55 | 3.77 |
| TX | 2.29 | 1.88 | 1.94 | 2.33 | 1.93 | 2.21 | 2.13 | 1.68 | 2.15 | 2.47 | 2.03 | 2.27 |
| UT | 1.99 | 2.07 | 1.70 | 2.05 | 2.03 | 2.51 | 1.55 | 1.69 | 0.58 | 2.68 | 1.79 | 6.24 |
| VA | 1.69 | 1.51 | 1.87 | 1.79 | 1.65 | 2.26 | 2.06 | 1.84 | 2.56 | 2.21 | 1.90 | 2.34 |
| VF |  |  |  |  |  |  |  |  |  | 5.42 | 0.00 | 4.66 |
| WA | 1.98 | 2.09 | 1.89 | 1.87 | 1.94 | 1.85 | 2.16 | 1.74 | 2.27 | 1.91 | 1.68 | 1.98 |
| WI | 1.06 | 0.92 | 1.18 | 1.34 | 1.31 | 1.36 | 1.25 | 1.28 | 1.28 | 1.28 | 1.14 | 1.48 |
| WV | 4.10 | 3.70 | 1.50 | 3.78 | 3.87 | 1.21 | 2.83 | 2.05 | 4.61 | 1.51 | 1.29 | 1.88 |
| WY | 2.64 | 0.92 | 4.21 | 0.00 |  | 0.00 | 1.38 | 1.12 | 2.00 | 2.44 | 2.57 | 1.19 |

Note. A blank indicates there are no students in that setting from this group.
Note. No students in the District of Columbia, and less than $5 \%$ of students in Massachusetts, Rhode Island, and Vermont have access to identification rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

TABLE I3
2015-2016 Black Representation Indices in All, Non-Title I, and Title I Schools by Locale for Nation and States

|  | Black City RI |  |  | Black Suburb RI |  |  | Black Town RI |  |  | Black Rural RI |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State | All | Non-Title I | Title I |
| National | 0.55 | 0.60 | 0.58 | 0.59 | 0.64 | 0.62 | 0.51 | 0.63 | 0.51 | 0.51 | 0.58 | 0.50 |
| AK | 0.47 | 0.35 | 0.56 | 0.56 | 0.54 | 0.66 | 0.78 | 0.70 | 1.01 | 0.91 | 0.89 | 0.45 |
| AL | 0.58 | 0.38 | 0.72 | 0.46 | 0.46 | 0.51 | 0.46 | 0.44 | 0.48 | 0.48 | 0.52 | 0.48 |
| AR | 1.00 | 0.45 | 1.02 | 0.55 | 0.34 | 0.57 | 0.62 | 0.56 | 0.62 | 0.78 | 0.80 | 0.78 |
| AZ | 0.43 | 0.44 | 0.43 | 0.38 | 0.00 | 0.38 | 0.58 |  | 0.61 | 0.44 | 0.00 | 0.47 |
| CA | 0.59 | 0.57 | 0.62 | 0.56 | 0.55 | 0.60 | 0.46 | 0.55 | 0.43 | 0.61 | 0.47 | 0.71 |
| CO | 0.50 | 0.48 | 0.66 | 0.40 | 0.41 | 0.49 | 0.29 | 0.21 | 0.61 | 0.28 | 0.30 | 0.29 |
| CT | 0.55 | 0.51 | 0.70 | 0.58 | 0.66 | 0.56 | 0.42 | 0.00 | 0.40 | 0.51 | 0.52 | 0.40 |
| BC |  |  |  |  |  |  |  |  |  |  |  |  |
| DE | 0.56 | 0.62 | 0.55 | 0.55 | 0.42 | 0.55 | 0.17 |  | 0.17 | 0.96 | 0.63 | 0.42 |
| FL | 0.36 | 0.35 | 0.39 | 0.45 | 0.35 | 0.51 | 0.44 | 0.68 | 0.44 | 0.41 | 0.48 | 0.44 |
| GA | 0.46 | 0.50 | 0.57 | 0.53 | 0.52 | 0.77 | 0.35 | 0.30 | 0.38 | 0.47 | 0.58 | 0.46 |
| HI | 0.50 | 0.42 | 0.73 | 0.50 | 0.48 | 0.57 | 1.21 | 0.00 | 1.28 | 0.34 | 0.56 | 0.00 |
| IA | 0.36 | 0.30 | 0.42 | 0.22 | 0.17 | 0.27 | 0.34 | 0.37 | 0.35 | 0.23 | 0.17 | 0.29 |
| ID | 0.42 | 0.50 | 0.41 | 0.45 | 0.54 | 0.42 | 0.63 | 0.95 | 0.62 | 0.13 | 0.00 | 0.14 |
| IL | 0.73 | 1.30 | 0.62 | 0.69 | 0.75 | 0.71 | 0.37 | 0.00 | 0.37 | 0.47 | 0.50 | 0.42 |
| IN | 0.46 | 0.48 | 0.51 | 0.47 | 0.51 | 0.55 | 0.37 | 0.62 | 0.37 | 0.44 | 0.51 | 0.43 |
| KS | 0.30 | 0.25 | 0.36 | 0.28 | 0.25 | 0.33 | 0.34 | 0.16 | 0.35 | 0.44 | 0.36 | 0.48 |
| KY | 0.41 | 0.42 | 0.42 | 0.39 | 0.67 | 0.36 | 0.50 | 0.60 | 0.50 | 0.47 | 0.61 | 0.47 |
| LA | 0.57 | 0.55 | 0.66 | 0.52 | 0.42 | 0.56 | 0.62 | 0.47 | 0.64 | 0.49 | 0.36 | 0.55 |
| AA | 0.86 | 0.25 | 0.98 | 0.76 | 7.12 | 0.63 |  |  |  | 0.00 | 0.00 | 0.00 |
| MD | 0.56 | 0.66 | 0.67 | 0.70 | 0.62 | 0.81 | 0.37 | 0.83 | 0.53 | 0.71 | 0.75 | 0.77 |
| ME | 0.39 | 0.55 | 0.38 | 0.17 | 0.16 | 0.18 | 0.82 | 0.53 | 0.84 | 0.47 | 0.57 | 0.45 |
| MI | 1.11 | 1.47 | 1.13 | 0.62 | 0.53 | 1.03 | 0.14 | 0.64 | 0.07 | 0.23 | 0.24 | 0.18 |
| MN | 0.56 | 0.32 | 0.58 | 0.58 | 0.61 | 0.58 | 0.34 | 0.20 | 0.46 | 0.74 | 0.76 | 0.49 |
| M0 | 0.53 | 0.70 | 0.58 | 0.48 | 0.53 | 0.48 | 0.27 | 0.32 | 0.25 | 0.38 | 0.37 | 0.33 |
| MS | 0.94 | 0.44 | 0.95 | 0.43 | 0.43 | 0.46 | 0.53 | 0.40 | 0.56 | 0.52 | 0.43 | 0.55 |
| MT | 0.64 | 0.41 | 0.68 | 0.00 |  | 0.00 | 0.16 | 0.00 | 0.19 | 0.34 | 0.00 | 0.38 |
| NC | 0.40 | 0.41 | 0.46 | 0.35 | 0.38 | 0.38 | 0.42 | 0.43 | 0.44 | 0.41 | 0.40 | 0.43 |
| ND | 0.26 | 0.28 | 0.28 | 0.28 | 0.38 | 0.26 | 0.51 | 0.55 | 0.49 | 0.00 | 0.00 | 0.00 |
| NE | 0.47 | 0.44 | 0.72 | 0.38 | 0.37 | 0.63 | 0.46 | 0.53 | 0.42 | 0.62 | 0.60 | 0.37 |
| NH | 1.07 |  | 1.07 | 0.49 | 0.59 | 0.46 | 3.80 |  | 3.80 | 0.59 | 1.32 | 0.38 |
| NJ | 0.93 | 0.32 | 1.03 | 0.64 | 0.49 | 0.68 | 0.85 | 0.00 | 0.90 | 0.49 | 0.66 | 0.54 |
| NM | 0.72 | 0.59 | 0.77 | 0.72 | 0.36 | 0.81 | 0.49 | 0.32 | 0.52 | 0.85 | 0.60 | 0.87 |
| NV | 0.35 | 0.29 | 0.42 | 0.42 | 0.44 | 0.44 | 0.63 | 0.80 | 0.40 | 0.34 | 0.34 | 0.34 |
| NY | 0.81 | 0.81 | 0.92 | 0.77 |  | 0.77 | 0.45 | 0.47 | 0.29 | 0.82 | 0.37 | 1.05 |
| OH | 0.54 | 0.47 | 0.57 | 0.28 | 0.30 | 0.31 | 0.36 | 0.40 | 0.38 | 0.40 | 0.31 | 0.44 |
| OK | 0.56 | 0.57 | 0.57 | 0.53 | 0.67 | 0.53 | 0.77 | 0.68 | 0.79 | 0.54 | 0.43 | 0.56 |
| OR | 0.33 | 0.33 | 0.63 | 0.35 | 0.35 | 0.46 | 0.51 | 0.51 | 0.51 | 0.46 | 0.42 | 0.50 |
| PA | 0.57 | 1.02 | 0.58 | 0.31 | 0.29 | 0.33 | 0.41 | 0.33 | 0.43 | 0.41 | 0.44 | 0.42 |
| nt |  |  |  | 0.00 |  | 0.00 |  |  |  | 0.00 | 0.00 | 0.00 |
| SC | 0.52 | 0.51 | 0.76 | 0.52 | 0.57 | 0.51 | 0.58 | 0.52 | 0.70 | 0.49 | 0.56 | 0.54 |
| SD | 0.17 | 0.17 | 0.43 |  |  |  | 0.16 | 0.00 | 0.21 | 0.51 | 0.69 | 0.64 |
| TN | 0.44 | 0.43 | 0.51 | 0.43 | 0.69 | 0.39 | 0.43 | 1.02 | 0.41 | 0.51 | 0.31 | 0.57 |
| TX | 0.53 | 0.46 | 0.58 | 0.47 | 0.36 | 0.57 | 0.49 | 0.36 | 0.50 | 0.46 | 0.43 | 0.48 |
| UT | 0.93 | 0.78 | 1.47 | 0.83 | 0.72 | 1.37 | 0.79 | 0.72 | 1.00 | 1.05 | 0.56 | 3.63 |
| VA | 0.55 | 0.57 | 0.72 | 0.45 | 0.47 | 0.57 | 0.64 | 0.77 | 0.45 | 0.39 | 0.37 | 0.52 |
| VF |  |  |  |  |  |  |  |  |  | 2.17 | 0.00 | 1.74 |
| WA | 0.23 | 0.21 | 0.24 | 0.57 | 0.53 | 0.58 | 0.69 | 1.03 | 0.55 | 0.42 | 0.61 | 0.37 |
| WI | 0.63 | 0.34 | 0.00 | 0.53 | 0.46 | 0.00 | 0.43 | 0.43 | 0.00 | 0.33 | 0.29 | 0.00 |
| WV | 0.39 | 0.31 | 0.70 | 0.56 | 0.62 | 0.58 | 0.30 | 0.38 | 0.23 | 0.43 | 0.19 | 0.82 |
| WY | 0.85 | 0.49 | 1.09 | 0.00 |  | 0.00 | 0.76 | 0.52 | 1.36 | 0.21 | 0.36 | 0.00 |

Note. A blank indicates there are no students in that setting from this group.
Note. No students in the District of Columbia, and less than 5\% of students in Massachusetts, Rhode Island, and Vermont have access to identification rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

TABLE I4
2015-2016 Latinx Representation Indices in All, Non-Title I, and Title I Schools by Locale for Nation and States

|  | Latinx City RI |  |  | Latinx Suburb RI |  |  | Latinx Town RI |  |  | Latinx Rural RI |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State | All | Non-Title I | Title I |
| National | 0.71 | 0.56 | 0.83 | 0.63 | 0.59 | 0.76 | 0.55 | 0.41 | 0.59 | 0.57 | 0.54 | 0.62 |
| AK | 0.60 | 0.50 | 0.70 | 0.67 | 0.73 | 0.52 | 0.72 | 0.72 | 0.67 | 0.61 | 0.43 | 1.01 |
| AL | 0.62 | 0.46 | 0.73 | 0.45 | 0.45 | 0.50 | 0.52 | 0.58 | 0.50 | 0.54 | 0.39 | 0.62 |
| AR | 0.54 | 0.33 | 0.55 | 0.46 | 0.55 | 0.44 | 0.58 | 0.46 | 0.59 | 0.63 | 0.35 | 0.66 |
| AZ | 0.65 | 0.78 | 0.65 | 0.58 | 0.61 | 0.58 | 0.62 |  | 0.62 | 0.82 | 0.00 | 0.83 |
| CA | 0.74 | 0.65 | 0.80 | 0.73 | 0.67 | 0.83 | 0.80 | 0.53 | 0.84 | 0.76 | 0.71 | 0.80 |
| CO | 0.63 | 0.54 | 0.98 | 0.46 | 0.49 | 0.72 | 0.44 | 0.45 | 0.48 | 0.46 | 0.49 | 0.48 |
| CT | 0.60 | 0.67 | 0.64 | 0.45 | 0.50 | 0.49 | 0.36 | 0.52 | 0.29 | 0.51 | 0.80 | 0.31 |
| BC |  |  |  |  |  |  |  |  |  |  |  |  |
| DE | 0.55 | 0.42 | 0.60 | 0.51 | 0.29 | 0.53 | 0.31 |  | 0.31 | 0.32 | 1.16 | 0.26 |
| FL | 0.81 | 0.79 | 0.84 | 0.89 | 0.72 | 0.97 | 0.79 | 0.74 | 0.80 | 0.66 | 0.75 | 0.69 |
| GA | 0.51 | 0.49 | 0.62 | 0.45 | 0.47 | 0.59 | 0.49 | 0.42 | 0.53 | 0.53 | 0.49 | 0.57 |
| HI | 0.54 | 0.36 | 0.72 | 0.55 | 0.60 | 0.45 | 0.54 | 0.79 | 0.51 | 0.46 | 0.71 | 0.17 |
| IA | 0.49 | 0.50 | 0.55 | 0.41 | 0.47 | 0.38 | 0.40 | 0.36 | 0.44 | 0.43 | 0.44 | 0.46 |
| ID | 0.28 | 0.39 | 0.27 | 0.43 | 0.68 | 0.39 | 0.32 | 0.20 | 0.34 | 0.41 | 0.69 | 0.41 |
| IL | 0.70 | 0.50 | 0.89 | 0.68 | 0.47 | 0.72 | 0.29 | 0.00 | 0.29 | 0.31 | 0.61 | 0.25 |
| IN | 0.52 | 0.52 | 0.57 | 0.62 | 0.64 | 0.70 | 0.44 | 0.47 | 0.44 | 0.56 | 0.62 | 0.55 |
| KS | 0.36 | 0.45 | 0.40 | 0.36 | 0.46 | 0.34 | 0.39 | 0.42 | 0.40 | 0.55 | 0.63 | 0.54 |
| KY | 0.43 | 0.84 | 0.43 | 0.50 | 0.58 | 0.52 | 0.49 | 0.46 | 0.49 | 0.53 | 0.45 | 0.53 |
| LA | 0.62 | 1.09 | 0.57 | 0.64 | 0.71 | 0.66 | 0.97 | 1.39 | 0.99 | 0.85 | 0.62 | 0.92 |
| AA | 0.85 | 0.42 | 0.95 | 0.51 | 0.62 | 0.51 |  |  |  | 1.04 | 6.75 | 0.55 |
| MD | 0.62 | 0.74 | 0.66 | 0.72 | 0.84 | 0.77 | 0.74 | 1.15 | 0.48 | 0.80 | 0.90 | 0.70 |
| ME | 0.56 | 0.32 | 0.57 | 0.46 | 0.12 | 0.59 | 0.39 | 0.00 | 0.41 | 0.70 | 0.44 | 0.74 |
| MI | 0.44 | 0.58 | 0.40 | 0.54 | 0.51 | 0.68 | 0.53 | 0.46 | 0.62 | 0.38 | 0.40 | 0.33 |
| MN | 0.79 | 0.48 | 0.82 | 0.50 | 0.54 | 0.52 | 0.36 | 0.36 | 0.41 | 0.71 | 0.57 | 1.01 |
| M0 | 0.67 | 0.82 | 0.68 | 0.47 | 0.63 | 0.42 | 0.26 | 0.39 | 0.24 | 0.57 | 0.54 | 0.57 |
| MS | 0.69 | 0.57 | 0.69 | 0.71 | 0.69 | 0.79 | 0.95 | 0.85 | 0.97 | 0.65 | 0.63 | 0.66 |
| MT | 0.37 | 0.37 | 0.37 | 0.12 |  | 0.12 | 0.39 | 0.47 | 0.38 | 0.64 | 0.73 | 0.63 |
| NC | 0.40 | 0.42 | 0.45 | 0.39 | 0.41 | 0.47 | 0.57 | 0.50 | 0.60 | 0.47 | 0.44 | 0.51 |
| ND | 0.51 | 0.68 | 0.36 | 0.47 | 0.43 | 0.51 | 0.31 | 0.39 | 0.28 | 0.35 | 0.34 | 0.35 |
| NE | 0.51 | 0.47 | 0.93 | 0.67 | 0.74 | 1.04 | 0.48 | 0.43 | 0.70 | 0.46 | 0.46 | 0.49 |
| NH |  |  |  | 0.47 | 0.65 | 0.42 | 0.99 |  | 0.99 | 0.47 | 0.00 | 0.56 |
| NJ | 0.61 | 0.75 | 0.68 | 0.65 | 0.69 | 0.64 | 0.49 | 0.49 | 0.50 | 0.43 | 0.53 | 0.44 |
| NM | 0.70 | 0.71 | 0.74 | 0.79 | 0.72 | 0.84 | 0.65 | 0.47 | 0.70 | 0.71 | 0.74 | 0.72 |
| NV | 0.65 | 0.58 | 0.75 | 0.77 | 0.54 | 0.87 | 0.51 | 0.58 | 0.53 | 0.68 | 0.59 | 0.82 |
| NY | 0.53 | 0.50 | 0.87 | 0.56 |  | 0.56 | 0.48 | 0.47 | 0.59 | 0.66 | 0.33 | 0.73 |
| OH | 0.62 | 0.55 | 0.66 | 0.43 | 0.49 | 0.44 | 0.43 | 0.45 | 0.44 | 0.41 | 0.37 | 0.44 |
| OK | 0.64 | 0.90 | 0.64 | 0.63 | 0.67 | 0.63 | 0.64 | 0.59 | 0.66 | 0.60 | 0.55 | 0.61 |
| OR | 0.38 | 0.42 | 0.49 | 0.33 | 0.32 | 0.58 | 0.52 | 0.37 | 0.88 | 0.41 | 0.41 | 0.48 |
| PA | 0.41 | 0.40 | 0.45 | 0.34 | 0.36 | 0.35 | 0.52 | 0.78 | 0.48 | 0.41 | 0.51 | 0.39 |
| nt |  |  |  | 1.16 |  | 7.16 |  |  |  | 0.00 | 0.00 | 0.00 |
| SC | 0.58 | 0.56 | 0.75 | 0.50 | 0.56 | 0.57 | 0.59 | 0.55 | 0.69 | 0.61 | 0.62 | 0.70 |
| SD | 0.22 | 0.28 | 0.33 |  |  |  | 0.29 | 0.45 | 0.25 | 0.19 | 0.33 | 0.18 |
| TN | 0.37 | 0.33 | 0.43 | 0.32 | 0.43 | 0.35 | 0.30 | 0.17 | 0.33 | 0.51 | 0.63 | 0.48 |
| TX | 0.86 | 0.62 | 0.95 | 0.68 | 0.55 | 0.81 | 0.75 | 0.49 | 0.75 | 0.75 | 0.60 | 0.82 |
| UT | 0.54 | 0.47 | 0.83 | 0.88 | 0.85 | 1.21 | 0.39 | 0.47 | 0.25 | 0.57 | 0.52 | 0.76 |
| VA | 0.59 | 0.56 | 0.73 | 0.59 | 0.62 | 0.76 | 0.53 | 0.53 | 0.58 | 0.61 | 0.63 | 0.52 |
| VF |  |  |  |  |  |  |  |  |  | 0.00 | 0.00 | 0.00 |
| WA | 0.35 | 0.36 | 0.35 | 0.47 | 0.46 | 0.48 | 0.34 | 0.47 | 0.30 | 0.41 | 0.44 | 0.40 |
| WI | 0.61 | 0.46 | 0.71 | 0.97 | 0.91 | 1.00 | 0.36 | 0.48 | 0.34 | 0.43 | 0.46 | 0.43 |
| WV | 0.42 | 0.48 | 0.28 | 0.48 | 0.43 | 0.82 | 0.51 | 0.45 | 0.63 | 0.17 | 0.19 | 0.14 |
| WY | 0.39 | 0.41 | 0.28 | 0.30 |  | 0.30 | 0.36 | 0.45 | 0.27 | 0.43 | 0.40 | 0.48 |

Note. A Blank indicates there are no students in that setting from this group.
Note. No students in the District of Columbia, and less than 5\% of students in Massachusetts, Rhode Island, and Vermont have access to identification rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

TABLE I5
2015-2016 Native Hawaiian/Pacific Islander Representation Indices in All, Non-
Title I, and Title I Schools by Locale for Nation and States

|  | NHPI City RI |  |  | NHPI Suburb RI |  |  | NHPI Town RI |  |  | NHPI Rural RI |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State | All | Non-Title I | Title I | All | Non-Title I | Title I | All | Non-Title I | Title 1 | All | Non-Title I | Title I |
| National | 0.59 | 0.44 | 0.66 | 0.65 | 0.51 | 0.77 | 0.55 | 0.41 | 0.60 | 0.59 | 0.68 | 0.54 |
| AK | 0.39 | 0.13 | 0.52 | 1.10 | 0.97 | 1.54 | 0.48 | 0.66 | 0.28 | 0.26 | 0.00 | 0.71 |
| AL | 0.63 | 0.18 | 0.97 | 0.29 | 0.26 | 0.33 | 0.11 | 0.00 | 0.17 | 0.85 | 0.72 | 0.91 |
| AR | 0.18 | 0.09 | 0.18 | 0.65 | 0.38 | 0.71 | 0.43 | 3.43 | 0.38 | 0.35 | 1.82 | 0.33 |
| AZ | 0.56 | 0.00 | 0.56 | 1.04 |  | 1.05 | 0.38 |  | 0.37 | 0.94 | 0.00 | 0.87 |
| CA | 0.85 | 0.73 | 0.91 | 0.82 | 0.65 | 0.95 | 0.79 | 0.94 | 0.75 | 1.03 | 1.31 | 0.74 |
| CO | 0.71 | 0.72 | 0.74 | 0.52 | 0.47 | 1.20 | 0.95 | 0.60 | 2.42 | 0.88 | 0.77 | 1.54 |
| CT | 1.39 | 1.49 | 1.12 | 0.83 | 0.88 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
| DE |  |  |  |  |  |  |  |  |  |  |  |  |
| DE | 0.90 | 0.00 | 1.23 | 1.35 |  | 1.31 | 0.00 |  | 0.00 | 0.00 |  | 0.00 |
| FL | 0.65 | 0.39 | 0.74 | 0.76 | 0.78 | 0.74 | 0.61 | 0.00 | 0.65 | 1.22 | 1.11 | 1.21 |
| GA | 0.70 | 0.80 | 0.76 | 0.92 | 0.78 | 1.27 | 1.07 | 1.32 | 1.07 | 0.86 | 0.70 | 1.01 |
| HI | 0.49 | 0.33 | 0.56 | 0.75 | 0.55 | 0.94 | 0.54 | 0.60 | 0.52 | 0.55 | 0.66 | 0.79 |
| IA | 0.28 | 0.32 | 0.28 | 0.77 | 1.73 | 0.00 | 0.30 | 0.32 | 0.31 | 0.42 | 0.27 | 0.54 |
| ID | 0.87 | 0.74 | 0.96 | 0.26 | 0.00 | 0.33 | 0.20 | 0.00 | 0.22 | 0.00 | 0.00 | 0.00 |
| IL | 1.05 | 1.60 | 0.52 | 0.93 | 1.06 | 0.90 | 0.34 |  | 0.34 | 0.62 | 0.00 | 1.58 |
| IN | 0.84 | 1.35 | 0.62 | 0.65 | 0.72 | 0.53 | 0.82 | 0.00 | 0.92 | 0.76 | 0.54 | 0.86 |
| KS | 0.94 | 2.07 | 0.41 | 0.00 | 0.00 | 0.00 | 0.28 | 0.00 | 0.31 | 0.27 | 0.84 | 0.16 |
| KY | 1.09 | 0.00 | 1.18 | 0.79 | 1.08 | 0.78 | 0.81 | 0.00 | 0.84 | 0.88 | 1.05 | 0.88 |
| LA | 1.77 | 1.58 | 1.85 | 0.57 | 0.00 | 0.53 | 1.15 |  | 1.24 | 1.97 | 1.48 | 2.18 |
| HA | 0.87 | 0.00 | 0.72 | 7.93 | 3.39 | 1.24 |  |  |  | 0.00 |  | 0.00 |
| MD | 0.52 | 0.54 | 0.59 | 0.68 | 0.74 | 0.61 | 0.59 | 0.38 | 1.52 | 0.75 | 0.68 | 0.92 |
| ME | 0.00 | 0.00 | 0.00 | 0.98 | 0.00 | 1.95 | 0.00 |  | 0.00 | 1.17 | 0.00 | 1.27 |
| MI | 1.56 | 2.26 | 0.99 | 1.29 | 0.82 | 3.10 | 1.01 | 1.99 | 0.00 | 0.60 | 0.00 | 2.44 |
| MN | 0.95 | 0.95 | 1.04 | 0.53 | 0.61 | 0.43 | 0.00 | 0.00 | 0.00 | 0.79 | 0.81 | 0.00 |
| MO | 0.15 | 0.19 | 0.13 | 0.62 | 1.26 | 0.37 | 0.23 | 0.28 | 0.21 | 0.62 | 0.82 | 0.62 |
| MS | 0.32 | 0.00 | 0.36 | 1.01 | 1.46 | 1.00 | 1.37 | 0.00 | 1.62 | 1.63 | 2.58 | 1.00 |
| MT | 0.52 | 0.86 | 0.43 | 2.79 |  | 2.79 | 0.79 |  | 0.83 | 0.64 | 0.00 | 0.68 |
| NC | 0.53 | 0.36 | 0.69 | 0.76 | 1.07 | 0.56 | 0.63 | 0.56 | 0.60 | 0.84 | 0.63 | 0.91 |
| ND | 0.82 | 0.55 | 1.63 | 0.00 |  | 0.00 | 0.78 | 0.00 | 1.65 | 1.94 | 3.62 | 0.00 |
| NE | 0.88 | 0.78 | 1.31 | 0.50 | 0.50 | 0.00 | 0.69 | 0.42 | 1.58 | 0.17 | 0.22 | 0.00 |
| NH | 0.00 |  | 0.00 | 0.00 |  | 0.00 | 0.00 |  | 0.00 | 0.00 |  | 0.00 |
| NJ | 1.25 | 1.05 | 1.29 | 1.17 | 1.21 | 1.14 | 0.50 | 0.00 | 0.55 | 1.15 | 1.42 | 1.08 |
| NM | 1.17 | 0.44 | 1.29 | 0.96 | 0.00 | 1.22 | 0.93 | 0.00 | 1.21 | 1.65 | 0.98 | 1.83 |
| NV | 0.70 | 0.51 | 0.91 | 0.96 | 0.56 | 1.18 | 1.54 | 1.42 | 2.04 | 0.62 | 0.35 | 2.04 |
| NY | 0.87 | 0.00 | 0.48 | 0.91 |  | 0.91 | 1.37 | 1.46 | 0.00 | 1.06 |  | 1.06 |
| OH | 0.74 | 0.56 | 0.75 | 0.33 | 0.51 | 0.31 | 0.25 | 0.31 | 0.23 | 0.74 | 0.32 | 0.99 |
| OK | 0.75 | 0.45 | 0.83 | 0.93 | 0.86 | 0.98 | 0.47 | 1.17 | 0.47 | 0.69 | 0.67 | 0.67 |
| OR | 0.37 | 0.44 | 0.44 | 0.32 | 0.38 | 0.26 | 1.09 | 0.96 | 1.39 | 0.87 | 0.83 | 0.91 |
| PA | 0.65 | 0.00 | 0.75 | 0.70 | 0.32 | 0.97 | 2.83 | 0.00 | 3.29 | 0.83 | 0.71 | 0.92 |
| Rt |  |  |  |  |  |  |  |  |  | 0.00 |  | 0.00 |
| SC | 0.92 | 0.79 | 1.27 | 0.68 | 0.69 | 0.60 | 1.41 | 1.35 | 1.30 | 1.10 | 1.16 | 0.48 |
| SD | 0.00 | 0.00 | 0.00 |  |  |  | 0.00 |  | 0.00 | 0.00 |  | 0.00 |
| TN | 1.09 | 1.81 | 0.78 | 1.22 | 1.65 | 0.39 | 1.39 | 0.00 | 1.83 | 0.88 | 0.00 | 1.19 |
| TX | 0.81 | 0.74 | 0.83 | 0.63 | 0.65 | 0.64 | 0.81 | 2.73 | 0.80 | 0.69 | 0.90 | 0.61 |
| UT | 0.42 | 0.41 | 0.56 | 1.06 | 1.08 | 1.24 | 1.78 | 1.67 | 0.00 | 0.94 | 0.49 | 3.28 |
| VA | 1.05 | 0.94 | 1.30 | 0.85 | 0.74 | 1.66 | 1.65 | 0.70 | 3.73 | 0.70 | 0.73 | 0.49 |
| VF |  |  |  |  |  |  |  |  |  |  |  |  |
| WA | 0.14 | 0.12 | 0.16 | 0.51 | 0.45 | 0.53 | 1.23 | 0.96 | 1.44 | 0.34 | 0.00 | 0.48 |
| WI | 0.81 | 0.76 | 0.86 | 0.51 | 0.84 | 0.14 | 0.39 | 0.50 | 0.38 | 0.18 | 0.40 | 0.00 |
| WV | 2.24 | 2.25 | 0.00 | 2.60 | 2.92 | 0.00 | 0.00 | 0.00 | 0.00 | 2.47 | 3.90 | 0.00 |
| WY | 0.00 | 0.00 | 0.00 | 0.00 |  | 0.00 | 0.18 | 0.26 | 0.00 | 0.00 | 0.00 | 0.00 |

Note. A blank indicates there are no students in that setting from this group.
Note. No students in the District of Columbia, and less than 5\% of students in Massachusetts, Rhode Island, and Vermont have access to identification rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

TABLE I6
2015-2016 Two or More Races Representation Indices in All, Non-Title I, and Title I Schools by Locale for Nation and States

|  | TMR City RI |  |  | TMR Suburb RI |  |  | TMR Town RI |  |  | TMR Rural RI |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State | All | Non-Title I | Title I |
| National | 1.08 | 1.00 | 1.05 | 1.04 | 0.98 | 1.05 | 0.86 | 0.79 | 0.89 | 0.92 | 0.94 | 0.88 |
| AK | 0.90 | 0.92 | 0.91 | 0.82 | 0.83 | 0.83 | 0.93 | 0.88 | 1.05 | 0.94 | 0.91 | 1.01 |
| AL | 0.93 | 0.74 | 0.82 | 0.87 | 0.75 | 1.00 | 0.93 | 0.92 | 0.94 | 0.82 | 0.77 | 0.86 |
| AR | 0.85 | 0.89 | 0.85 | 0.77 | 0.49 | 0.81 | 0.73 | 0.37 | 0.75 | 0.89 | 0.59 | 0.92 |
| AZ | 1.32 | 1.56 | 1.32 | 1.06 | 1.72 | 1.05 | 0.70 |  | 0.69 | 0.69 | 8.18 | 0.68 |
| CA | 1.08 | 0.95 | 1.10 | 1.12 | 0.97 | 1.13 | 1.04 | 1.00 | 1.05 | 1.03 | 1.05 | 0.88 |
| CO | 1.20 | 1.17 | 1.02 | 1.06 | 1.02 | 1.28 | 1.20 | 1.23 | 1.24 | 1.26 | 1.23 | 1.01 |
| CT | 1.01 | 0.96 | 1.02 | 1.36 | 1.38 | 1.28 | 0.88 | 0.00 | 0.88 | 1.14 | 1.16 | 1.26 |
| DE |  |  |  |  |  |  |  |  |  |  |  |  |
| DE | 0.69 | 0.58 | 0.75 | 0.63 | 0.24 | 0.73 | 0.55 |  | 0.55 | 0.49 | 0.55 | 1.32 |
| FL | 1.10 | 1.00 | 1.13 | 1.08 | 1.05 | 1.05 | 0.91 | 0.84 | 0.92 | 1.08 | 1.07 | 1.10 |
| GA | 1.34 | 1.05 | 1.44 | 1.15 | 0.99 | 1.33 | 0.82 | 0.94 | 0.79 | 0.95 | 0.99 | 0.91 |
| HI | 1.16 | 0.93 | 1.41 | 0.89 | 0.95 | 0.80 | 0.92 | 1.21 | 0.92 | 0.93 | 1.01 | 0.45 |
| IA | 0.75 | 0.82 | 0.77 | 0.53 | 0.68 | 0.40 | 0.63 | 0.50 | 0.70 | 0.72 | 0.70 | 0.74 |
| ID | 0.80 | 0.72 | 0.86 | 1.07 | 0.89 | 1.16 | 0.57 | 0.41 | 0.59 | 0.56 | 2.18 | 0.53 |
| IL | 1.13 | 1.23 | 0.98 | 1.23 | 1.20 | 1.24 | 0.65 | 0.00 | 0.65 | 0.92 | 1.06 | 0.92 |
| IN | 0.95 | 0.92 | 0.98 | 0.83 | 0.84 | 0.88 | 0.69 | 0.68 | 0.70 | 0.77 | 0.85 | 0.75 |
| KS | 0.95 | 0.94 | 1.00 | 0.84 | 0.92 | 0.82 | 0.89 | 0.76 | 0.91 | 0.93 | 0.81 | 0.98 |
| KY | 0.83 | 0.92 | 0.82 | 0.80 | 0.87 | 0.81 | 0.69 | 0.71 | 0.69 | 0.75 | 0.65 | 0.76 |
| LA | 1.38 | 1.31 | 0.93 | 0.99 | 0.97 | 0.96 | 0.94 | 0.00 | 1.03 | 0.86 | 0.63 | 0.94 |
| HA | 1.02 | 7.04 | 1.03 | 0.99 | 1.17 | 0.93 |  |  |  | 1.75 | 6.04 | 7.35 |
| MD | 1.07 | 1.03 | 1.20 | 1.20 | 1.17 | 1.21 | 1.07 | 1.08 | 0.87 | 0.88 | 0.96 | 0.76 |
| ME | 0.66 | 0.61 | 0.66 | 0.68 | 1.31 | 0.52 | 1.04 | 1.83 | 0.99 | 0.78 | 1.38 | 0.72 |
| MI | 0.55 | 0.47 | 0.73 | 0.56 | 0.56 | 0.72 | 0.30 | 0.13 | 0.48 | 0.38 | 0.33 | 0.55 |
| MN | 0.84 | 1.07 | 0.74 | 0.78 | 0.82 | 0.81 | 0.90 | 0.44 | 1.29 | 0.71 | 0.91 | 0.39 |
| M0 | 0.72 | 0.63 | 0.78 | 0.94 | 0.94 | 0.95 | 0.80 | 1.00 | 0.75 | 0.72 | 0.89 | 0.64 |
| MS | 0.70 |  | 0.71 | 0.60 | 0.64 | 0.64 | 1.07 | 0.99 | 1.06 | 0.61 | 0.40 | 0.68 |
| MT | 0.44 | 0.94 | 0.31 | 0.62 |  | 0.62 | 1.11 | 1.17 | 1.09 | 0.82 | 2.85 | 0.75 |
| NC | 1.15 | 1.13 | 1.21 | 0.85 | 0.91 | 0.86 | 0.87 | 0.81 | 0.89 | 0.87 | 0.91 | 0.86 |
| ND | 0.48 | 0.24 | 0.97 |  |  |  | 0.66 | 0.68 | 0.69 | 0.20 | 0.33 | 0.00 |
| NE | 0.83 | 0.82 | 1.01 | 0.67 | 0.65 | 0.95 | 0.70 | 0.79 | 0.46 | 0.68 | 0.63 | 0.67 |
| NH | 0.71 |  | 0.71 | 1.04 | 0.45 | 1.44 | 0.78 |  | 0.78 | 1.06 | 0.57 | 1.18 |
| NJ | 0.84 | 1.25 | 0.72 | 0.70 | 0.72 | 0.70 | 0.47 | 0.00 | 0.50 | 0.45 | 0.38 | 0.51 |
| NM | 1.48 | 1.28 | 1.45 | 1.88 | 1.63 | 1.69 | 1.58 | 0.84 | 1.68 | 1.42 | 1.04 | 1.04 |
| NV | 1.22 | 1.03 | 1.44 | 1.32 | 1.09 | 1.42 | 1.44 | 1.58 | 0.84 | 1.25 | 1.23 | 1.24 |
| NY | 1.41 | 1.33 | 0.72 | 0.64 |  | 0.64 | 0.82 | 0.83 | 0.89 | 1.05 | 0.63 | 1.26 |
| OH | 0.93 | 0.97 | 0.93 | 0.78 | 0.83 | 0.79 | 0.63 | 0.69 | 0.64 | 0.73 | 0.82 | 0.70 |
| OK | 1.10 | 0.77 | 1.17 | 0.88 | 0.83 | 0.91 | 0.79 | 0.78 | 0.79 | 0.76 | 0.72 | 0.77 |
| OR | 1.15 | 1.11 | 1.24 | 1.13 | 1.09 | 1.29 | 0.88 | 0.95 | 0.69 | 1.02 | 1.03 | 1.02 |
| PA | 1.17 | 1.19 | 1.18 | 0.73 | 0.92 | 0.67 | 0.50 | 0.39 | 0.52 | 0.72 | 1.11 | 0.57 |
| Rt |  |  |  | 0.60 |  | 0.60 |  |  |  | 0.00 | 0.00 | 0.00 |
| SC | 0.94 | 0.93 | 1.12 | 0.83 | 0.83 | 1.09 | 0.74 | 0.81 | 0.73 | 0.87 | 0.86 | 0.94 |
| SD | 0.43 | 0.57 | 0.38 |  |  |  | 0.87 | 0.65 | 0.92 | 0.69 | 0.73 | 0.63 |
| TN | 0.74 | 0.97 | 0.67 | 0.90 | 0.75 | 1.07 | 0.86 | 2.78 | 0.28 | 0.90 | 1.08 | 0.81 |
| TX | 1.28 | 1.18 | 1.15 | 1.29 | 1.16 | 1.28 | 0.95 | 0.86 | 0.96 | 1.09 | 1.20 | 1.01 |
| UT | 1.43 | 1.48 | 1.15 | 0.64 | 0.63 | 0.56 | 0.35 | 0.25 | 1.26 | 0.91 | 0.58 | 2.30 |
| VA | 1.20 | 1.11 | 1.37 | 1.13 | 1.09 | 1.26 | 0.60 | 0.58 | 0.72 | 0.89 | 0.90 | 0.80 |
| VF |  |  |  |  |  |  |  |  |  | 3.25 |  | z.26 |
| WA | 0.98 | 0.98 | 0.99 | 1.04 | 1.05 | 1.04 | 1.10 | 1.00 | 1.15 | 0.97 | 1.09 | 0.92 |
| WI | 0.84 | 0.79 | 0.87 | 0.80 | 0.87 | 0.73 | 0.71 | 0.83 | 0.64 | 0.72 | 0.72 | 0.70 |
| WV | 0.62 | 0.73 | 0.55 | 0.73 | 0.64 | 1.30 | 0.30 | 0.46 | 0.12 | 0.88 | 0.93 | 0.80 |
| WY | 0.59 | 0.18 | 0.88 | 2.23 |  | 2.23 | 0.43 | 0.43 | 0.49 | 0.95 | 1.42 | 0.00 |

Note. A blank indicates there are no students in that setting from this group.
Note. No students in the District of Columbia, and less than 5\% of students in Massachusetts, Rhode Island, and Vermont have access to identification rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

TABLE I7
2015-2016 White Representation Indices in All, Non-Title I, and Title I Schools by Locale for Nation and States

|  | White City RI |  |  | White Suburb RI |  |  | White Town RI |  |  | White Rural RI |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| State | All | Non-Title I | Title I |
| National | 1.44 | 1.15 | 1.49 | 1.22 | 1.07 | 1.27 | 1.23 | 1.14 | 1.24 | 1.15 | 1.09 | 1.17 |
| AK | 1.49 | 1.31 | 1.65 | 1.16 | 1.13 | 1.23 | 1.19 | 1.15 | 1.27 | 1.21 | 1.17 | 1.20 |
| AL | 2.15 | 1.35 | 2.63 | 1.37 | 1.23 | 1.49 | 1.31 | 1.18 | 1.35 | 1.17 | 1.12 | 1.17 |
| AR | 1.24 | 1.10 | 1.28 | 1.24 | 1.09 | 1.28 | 1.19 | 1.08 | 1.19 | 1.08 | 1.10 | 1.08 |
| AZ | 1.65 | 1.04 | 1.66 | 1.38 | 1.12 | 1.38 | 1.35 |  | 1.34 | 1.24 | 1.21 | 1.23 |
| CA | 1.33 | 1.04 | 1.50 | 1.25 | 1.01 | 1.37 | 1.44 | 1.36 | 1.45 | 1.29 | 1.17 | 1.37 |
| CO | 1.41 | 1.27 | 1.18 | 1.23 | 1.15 | 1.49 | 1.33 | 1.27 | 1.42 | 1.16 | 1.13 | 1.24 |
| CT | 1.54 | 1.30 | 1.80 | 1.13 | 1.02 | 1.24 | 0.99 | 1.16 | 1.04 | 1.01 | 0.96 | 1.08 |
| DE |  |  |  |  |  |  |  |  |  |  |  |  |
| DE | 2.22 | 1.68 | 2.37 | 1.34 | 1.10 | 1.47 | 1.45 |  | 1.45 | 1.28 | 1.16 | 1.50 |
| FL | 1.53 | 1.16 | 1.58 | 1.33 | 1.16 | 1.31 | 1.27 | 1.04 | 1.28 | 1.20 | 1.01 | 1.23 |
| GA | 2.32 | 1.32 | 2.95 | 1.58 | 1.20 | 1.87 | 1.51 | 1.32 | 1.54 | 1.27 | 1.15 | 1.34 |
| HI | 1.02 | 1.05 | 1.14 | 1.42 | 1.55 | 1.15 | 1.72 | 1.54 | 1.80 | 1.36 | 0.85 | 1.79 |
| IA | 1.28 | 1.09 | 1.36 | 1.08 | 1.04 | 1.12 | 1.13 | 1.06 | 1.16 | 1.05 | 1.04 | 1.06 |
| ID | 1.10 | 0.99 | 1.17 | 1.14 | 1.04 | 1.19 | 1.23 | 1.16 | 1.23 | 1.18 | 1.00 | 1.19 |
| IL | 1.13 | 0.96 | 1.26 | 1.12 | 1.02 | 1.17 | 1.16 | 1.31 | 1.16 | 1.11 | 0.98 | 1.15 |
| IN | 1.39 | 1.07 | 1.46 | 1.15 | 1.04 | 1.19 | 1.08 | 1.05 | 1.08 | 1.04 | 1.02 | 1.05 |
| KS | 1.42 | 0.99 | 1.62 | 1.14 | 1.05 | 1.23 | 1.21 | 1.09 | 1.22 | 1.06 | 0.99 | 1.08 |
| KY | 1.33 | 1.12 | 1.34 | 1.18 | 1.03 | 1.24 | 1.07 | 1.07 | 1.07 | 1.04 | 1.03 | 1.04 |
| LA | 1.82 | 1.14 | 1.91 | 1.32 | 1.10 | 1.35 | 1.35 | 1.43 | 1.33 | 1.21 | 1.17 | 1.19 |
| AA | 1.48 | 1.18 | 7.32 | 1.05 | 0.90 | 7.15 |  |  |  | 0.99 | 0.78 | 7.00 |
| MD | 1.33 | 1.09 | 1.60 | 1.35 | 1.20 | 1.43 | 1.01 | 0.86 | 1.32 | 0.95 | 0.92 | 1.06 |
| ME | 1.20 | 0.99 | 1.23 | 1.03 | 1.02 | 1.03 | 1.01 | 0.99 | 1.01 | 1.01 | 0.98 | 1.01 |
| MI | 1.01 | 0.83 | 1.06 | 1.04 | 1.03 | 1.01 | 1.08 | 1.02 | 1.12 | 1.07 | 1.06 | 1.09 |
| MN | 1.14 | 1.17 | 1.24 | 1.14 | 1.09 | 1.23 | 1.11 | 1.09 | 1.10 | 1.02 | 1.01 | 1.04 |
| M0 | 1.29 | 1.03 | 1.37 | 1.13 | 1.03 | 1.19 | 1.10 | 1.11 | 1.10 | 1.04 | 1.07 | 1.04 |
| MS | 1.40 | 1.18 | 1.39 | 1.36 | 1.28 | 1.41 | 1.95 | 1.42 | 2.08 | 1.31 | 1.25 | 1.32 |
| MT | 1.14 | 1.07 | 1.17 | 1.08 |  | 1.08 | 1.07 | 1.04 | 1.07 | 1.01 | 1.04 | 1.02 |
| NC | 1.97 | 1.36 | 2.35 | 1.33 | 1.21 | 1.44 | 1.52 | 1.13 | 1.56 | 1.33 | 1.16 | 1.36 |
| ND | 1.13 | 1.05 | 1.27 | 1.17 | 1.07 | 1.26 | 1.16 | 1.14 | 1.18 | 0.93 | 1.07 | 0.69 |
| NE | 1.34 | 1.19 | 1.25 | 1.12 | 1.08 | 1.01 | 1.20 | 1.14 | 1.18 | 1.07 | 1.06 | 1.08 |
| NH | 1.09 |  | 1.09 | 0.99 | 1.03 | 0.98 | 0.98 |  | 0.98 | 1.01 | 1.04 | 1.00 |
| NJ | 1.99 | 1.03 | 1.57 | 1.03 | 0.90 | 1.12 | 1.08 | 1.04 | 1.07 | 1.07 | 1.00 | 1.09 |
| NM | 1.92 | 1.18 | 2.01 | 1.63 | 1.20 | 1.59 | 1.68 | 1.24 | 1.64 | 1.96 | 1.39 | 1.98 |
| NV | 1.49 | 1.27 | 1.73 | 1.58 | 1.33 | 1.64 | 1.25 | 1.13 | 1.43 | 1.22 | 1.18 | 1.27 |
| NY | 1.23 | 1.38 | 1.35 | 1.12 |  | 1.12 | 1.04 | 1.04 | 1.07 | 1.00 | 1.05 | 0.98 |
| OH | 1.61 | 1.16 | 1.62 | 1.12 | 1.04 | 1.16 | 1.05 | 1.03 | 1.06 | 1.02 | 1.01 | 1.03 |
| OK | 1.53 | 1.14 | 1.60 | 1.16 | 1.09 | 1.18 | 1.15 | 1.07 | 1.15 | 1.10 | 1.11 | 1.09 |
| OR | 1.21 | 1.13 | 1.26 | 1.06 | 1.01 | 1.17 | 1.19 | 1.21 | 1.08 | 1.08 | 1.05 | 1.12 |
| PA | 1.80 | 1.03 | 1.84 | 1.08 | 1.02 | 1.11 | 1.03 | 0.99 | 1.04 | 1.03 | 0.98 | 1.05 |
| PH |  |  |  | 1.04 |  | 7.04 |  |  |  | 1.07 | 7.07 | 1.08 |
| SC | 1.55 | 1.39 | 1.50 | 1.31 | 1.23 | 1.56 | 1.51 | 1.33 | 1.55 | 1.33 | 1.18 | 1.47 |
| SD | 1.31 | 1.18 | 1.55 |  |  |  | 1.06 | 0.99 | 1.09 | 1.33 | 0.98 | 1.42 |
| TN | 1.67 | 1.12 | 1.79 | 1.12 | 1.00 | 1.21 | 1.13 | 0.97 | 1.16 | 1.05 | 1.05 | 1.05 |
| TX | 1.52 | 1.06 | 1.60 | 1.42 | 1.09 | 1.57 | 1.44 | 1.25 | 1.45 | 1.25 | 1.13 | 1.25 |
| UT | 1.19 | 1.11 | 1.23 | 1.01 | 1.01 | 0.81 | 1.11 | 1.09 | 1.18 | 1.04 | 1.06 | 0.93 |
| VA | 1.51 | 1.34 | 1.70 | 1.21 | 1.13 | 1.42 | 1.16 | 1.11 | 1.25 | 1.15 | 1.15 | 1.18 |
| VF |  |  |  |  |  |  |  |  |  | 0.93 | 1.02 | 0.93 |
| WA | 1.26 | 1.21 | 1.29 | 1.09 | 1.09 | 1.08 | 1.40 | 1.37 | 1.41 | 1.18 | 1.17 | 1.18 |
| WI | 1.38 | 1.22 | 1.52 | 1.03 | 1.03 | 1.03 | 1.10 | 1.05 | 1.13 | 1.05 | 1.05 | 1.06 |
| WV | 1.05 | 1.02 | 1.11 | 1.02 | 1.01 | 1.02 | 1.04 | 1.03 | 1.05 | 1.02 | 1.03 | 1.01 |
| WY | 1.09 | 1.11 | 1.17 | 1.21 |  | 1.21 | 1.12 | 1.09 | 1.16 | 1.03 | 1.02 | 1.09 |

Note. A blank indicates there are no students in that setting from this group.
Note. No students in the District of Columbia, and less than 5\% of students in Massachusetts, Rhode Island, and Vermont have access to identification rendering calculations meaningless, therefore these states have been crossed out but the information is included for reference.

TABLE I8
2015-2016 American Indian/Alaska Native Student Enrollment Nationally and by State for Title I Status and Locale With Cumulative Percentage and Ordered by Percent Enrolled in States

| State | N of AIAN | $\%$ of State Pop | National Cumulative \% | Non-Title I \% | Title I \% | City \% | Suburb\% | Town \% | Rural \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| National | 524,745 | 1.04 |  | 17.04 | 79.76 | 20.19 | 16.78 | 23.81 | 38.20 |
| AK | 30,908 | 23.43 | 5.89 | 18.50 | 81.20 | 14.04 | 3.12 | 20.94 | 61.70 |
| OK | 100,993 | 14.52 | 25.14 | 8.57 | 91.09 | 7.42 | 11.91 | 32.50 | 47.88 |
| MT | 17,694 | 12.01 | 28.51 | 2.68 | 97.29 | 15.97 | 1.06 | 36.56 | 46.38 |
| SD | 15,356 | 11.21 | 31.43 | 10.02 | 89.68 | 22.06 | 0.59 | 14.98 | 62.07 |
| NM | 35,033 | 10.33 | 38.11 | 2.22 | 94.99 | 20.15 | 5.09 | 33.97 | 39.35 |
| ND | 10,353 | 9.37 | 40.08 | 31.76 | 67.86 | 16.52 | 5.16 | 12.69 | 65.26 |
| AZ | 53,755 | 4.75 | 50.33 | 2.04 | 96.44 | 30.38 | 10.83 | 35.78 | 22.87 |
| WY | 3,643 | 3.85 | 51.02 | 30.55 | 69.04 | 30.00 | 64.15 | 30.00 | 64.15 |
| MN | 15,639 | 1.78 | 54.00 | 37.09 | 62.74 | 18.50 | 12.80 | 17.00 | 50.30 |
| ID | 4,284 | 1.45 | 54.82 | 11.46 | 87.54 | 19.84 | 24.09 | 22.83 | 32.40 |
| OR | 8,299 | 1.45 | 56.40 | 51.79 | 47.28 | 19.18 | 13.39 | 38.80 | 27.80 |
| NE | 4,472 | 1.41 | 57.25 | 31.69 | 68.05 | 20.84 | 7.31 | 18.40 | 53.38 |
| NC | 21,312 | 1.37 | 61.31 | 6.81 | 87.93 | 8.29 | 8.55 | 22.79 | 55.14 |
| WA | 14,184 | 1.30 | 64.02 | 32.60 | 66.88 | 19.99 | 26.57 | 23.01 | 29.92 |
| WI | 10,412 | 1.20 | 66.00 | 32.36 | 67.39 | 20.20 | 12.23 | 24.85 | 42.69 |
| AL | 8,424 | 1.13 | 67.61 | 26.56 | 72.88 | 5.26 | 13.45 | 17.26 | 63.43 |
| UT | 7,170 | 1.08 | 68.97 | 42.97 | 57.00 | 14.49 | 34.56 | 19.26 | 31.66 |
| KS | 5,234 | 1.07 | 69.97 | 12.76 | 86.34 | 27.44 | 11.86 | 27.76 | 32.17 |
| NV | 4,594 | 0.98 | 70.85 | 53.46 | 46.17 | 30.56 | 17.59 | 29.06 | 22.20 |
| CO | 6,455 | 0.72 | 72.08 | 61.95 | 37.89 | 35.24 | 28.27 | 19.04 | 17.34 |
| MI | 11,005 | 0.71 | 74.17 | 29.25 | 70.18 | 9.21 | 18.90 | 22.52 | 47.70 |
| RI | 989 | 0.70 | 74.36 | 9.10 | 89.99 | 33.47 | 56.72 | 0.00 | 9.50 |
| LA | 5,006 | 0.69 | 75.32 | 5.27 | 93.33 | 20.12 | 23.15 | 12.78 | 43.35 |
| ME | 1,223 | 0.69 | 75.55 | 9.81 | 90.11 | 12.51 | 11.69 | 20.28 | 55.52 |
| AR | 3,154 | 0.65 | 76.15 | 12.87 | 86.02 | 27.84 | 11.89 | 22.19 | 37.03 |
| NY | 17,386 | 0.64 | 79.46 | 10.92 | 36.09 | 59.74 | 14.34 | 7.85 | 16.85 |
| CA | 36,508 | 0.58 | 86.42 | 21.47 | 70.77 | 30.43 | 30.59 | 14.47 | 19.64 |
| VT | 430 | 0.52 | 86.50 | 59.30 | 40.47 | 1.63 | 7.63 | 28.88 | 78.75 |
| M0 | 3,732 | 0.40 | 87.21 | 17.23 | 81.86 | 17.52 | 22.83 | 24.87 | 33.87 |
| DE | 547 | 0.39 | 87.32 | 34.00 | 65.45 | 19.74 | 35.10 | 20.66 | 23.22 |
| IA | 1,915 | 0.38 | 87.68 | 22.98 | 76.08 | 41.57 | 8.30 | 22.04 | 27.15 |
| TX | 19,443 | 0.37 | 91.39 | 19.84 | 79.81 | 34.21 | 36.77 | 10.12 | 18.69 |
| SC | 2,568 | 0.34 | 91.88 | 56.81 | 42.76 | 15.73 | 31.46 | 13.59 | 38.86 |
| FL | 8,992 | 0.32 | 93.59 | 16.17 | 83.79 | 21.20 | 57.06 | 5.04 | 16.68 |
| HI | 569 | 0.31 | 93.70 | 37.08 | 62.92 | 14.24 | 36.91 | 32.16 | 16.70 |
| VA | 3,697 | 0.29 | 94.40 | 72.06 | 27.83 | 23.18 | 45.31 | 5.98 | 25.43 |
| IL | 5,803 | 0.29 | 95.51 | 15.29 | 81.23 | 28.93 | 56.40 | 6.55 | 7.70 |
| NH | 520 | 0.28 | 95.61 | 5.58 | 93.65 | 12.88 | 36.15 | 18.85 | 31.73 |
| CT | 1,520 | 0.28 | 95.90 | 45.07 | 54.47 | 26.64 | 48.29 | 4.47 | 20.07 |
| MD | 2,487 | 0.28 | 96.37 | 42.50 | 57.22 | 18.58 | 65.62 | 2.69 | 12.95 |
| MS | 1,206 | 0.25 | 96.60 | 30.85 | 52.24 | 4.48 | 9.87 | 33.00 | 35.74 |
| MA | 2,236 | 0.23 | 97.03 | 37.43 | 61.31 | 18.87 | 69.86 | 2.55 | 8.32 |
| IN | 2,235 | 0.22 | 97.45 | 24.25 | 75.21 | 27.16 | 27.34 | 14.68 | 30.43 |
| GA | 3,551 | 0.20 | 98.13 | 40.66 | 58.66 | 14.84 | 49.65 | 10.42 | 24.30 |
| DC | 150 | 0.18 | 98.16 | 14.00 | 86.00 | 100.00 | 0.00 | 0.00 | 0.00 |
| TN | 1,762 | 0.18 | 98.50 | 16.46 | 83.03 | 26.33 | 20.60 | 18.96 | 34.11 |
| PA | 2,760 | 0.16 | 99.02 | 18.01 | 81.49 | 26.85 | 45.33 | 9.93 | 17.50 |
| NJ | 1,773 | 0.13 | 99.36 | 26.23 | 72.31 | 13.87 | 68.42 | 3.78 | 12.52 |
| OH | 2,246 | 0.13 | 99.79 | 22.17 | 76.71 | 25.51 | 43.01 | 12.60 | 18.34 |
| KY | 834 | 0.12 | 99.95 | 10.19 | 89.69 | 21.94 | 19.66 | 27.34 | 30.94 |
| WV | 284 | 0.10 | 100.00 | 59.86 | 40.14 | 24.30 | 22.54 | 17.61 | 35.56 |

TABLE I9
2015-2016 Asian Student Enrollment Nationally and by State for Title I Status and Locale With Cumulative Percentage and Ordered by Percent Enrolled in States

| State | N of Asian | \% of State Pop | National Cumulative \% | Non-Title I \% | Title I \% | City \% | Suburb \% | Town \% | Rural \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| National | 2,498,621 | 4.95 |  | 43.25 | 48.21 | 41.08 | 49.40 | 2.92 | 5.64 |
| HI | 55,118 | 30.17 | 2.21 | 45.92 | 54.08 | 35.16 | 45.24 | 15.07 | 4.52 |
| CA | 694,650 | 11.08 | 30.01 | 43.90 | 50.45 | 49.49 | 44.33 | 1.28 | 2.26 |
| NJ | 134,169 | 9.79 | 35.38 | 45.48 | 54.41 | 5.69 | 88.22 | 0.31 | 5.69 |
| NY | 241,487 | 8.86 | 45.04 | 13.70 | 19.71 | 71.64 | 22.83 | 3.27 | 1.77 |
| WA | 80,546 | 7.36 | 48.27 | 33.39 | 66.46 | 44.28 | 49.73 | 2.85 | 2.99 |
| VA | 85,288 | 6.64 | 51.68 | 87.26 | 12.65 | 14.44 | 74.45 | 1.13 | 9.90 |
| MN | 58,152 | 6.60 | 54.01 | 43.83 | 55.89 | 46.91 | 43.22 | 5.06 | 4.52 |
| MA | 61,694 | 6.47 | 56.48 | 50.95 | 48.70 | 19.10 | 77.01 | 0.36 | 3.32 |
| MD | 55,706 | 6.23 | 58.70 | 64.93 | 34.97 | 20.69 | 67.44 | 2.06 | 9.75 |
| AK | 7,834 | 5.94 | 59.02 | 36.99 | 62.87 | 64.58 | 1.95 | 22.54 | 10.81 |
| NV | 25,742 | 5.47 | 60.05 | 51.84 | 48.07 | 50.63 | 41.68 | 1.60 | 6.07 |
| CT | 26,766 | 4.99 | 61.12 | 53.01 | 46.89 | 28.82 | 61.45 | 1.18 | 8.40 |
| IL | 96,305 | 4.75 | 64.97 | 34.74 | 57.03 | 37.35 | 56.43 | 1.73 | 4.42 |
| TX | 212,957 | 4.02 | 73.50 | 49.97 | 49.75 | 43.44 | 48.45 | 1.86 | 6.13 |
| OR | 22,804 | 3.98 | 74.41 | 72.82 | 26.28 | 47.58 | 40.43 | 6.05 | 5.09 |
| WI | 32,837 | 3.78 | 75.72 | 48.49 | 51.37 | 52.54 | 31.11 | 8.72 | 7.61 |
| GA | 66,479 | 3.76 | 78.38 | 66.08 | 33.66 | 10.33 | 76.65 | 3.13 | 9.59 |
| DE | 5,111 | 3.68 | 78.59 | 48.93 | 50.66 | 13.60 | 65.82 | 7.16 | 13.13 |
| PA | 63,145 | 3.66 | 81.12 | 31.93 | 67.83 | 26.92 | 65.08 | 2.05 | 5.80 |
| MI | 48,953 | 3.17 | 83.08 | 54.05 | 44.10 | 37.24 | 49.43 | 3.22 | 7.32 |
| NH | 5,767 | 3.16 | 83.31 | 18.54 | 81.46 | 33.08 | 34.85 | 14.37 | 17.69 |
| RI | 4,463 | 3.15 | 83.48 | 15.53 | 83.93 | 34.62 | 61.04 | 0.00 | 3.83 |
| CO | 27,851 | 3.10 | 84.60 | 80.23 | 19.28 | 44.26 | 46.07 | 2.15 | 7.03 |
| NC | 47,063 | 3.03 | 86.48 | 50.56 | 48.95 | 45.06 | 34.09 | 3.79 | 16.61 |
| AZ | 32,028 | 2.83 | 87.77 | 20.19 | 78.20 | 45.19 | 37.98 | 11.23 | 5.44 |
| KS | 13,541 | 2.76 | 88.31 | 33.61 | 65.03 | 50.59 | 20.68 | 12.33 | 15.17 |
| FL | 73,368 | 2.64 | 91.24 | 26.29 | 73.52 | 28.74 | 62.04 | 1.34 | 7.86 |
| NE | 8,053 | 2.54 | 91.57 | 65.59 | 34.36 | 73.91 | 13.29 | 6.61 | 6.17 |
| IA | 12,050 | 2.40 | 92.05 | 36.90 | 63.00 | 49.24 | 22.85 | 15.77 | 12.03 |
| VT | 1,859 | 2.24 | 92.12 | 24.15 | 75.74 | 76.86 | 59.98 | 36.36 | 46.04 |
| IN | 22,224 | 2.15 | 93.01 | 34.87 | 65.07 | 49.97 | 32.64 | 5.15 | 12.23 |
| OH | 36,717 | 2.09 | 94.48 | 37.32 | 62.35 | 17.40 | 68.46 | 4.62 | 9.35 |
| OK | 13,385 | 1.92 | 95.02 | 23.88 | 76.05 | 42.98 | 31.54 | 11.50 | 13.91 |
| M0 | 17,817 | 1.92 | 95.73 | 36.49 | 62.65 | 25.87 | 53.52 | 8.96 | 10.79 |
| TN | 18,805 | 1.88 | 96.48 | 35.25 | 64.59 | 40.38 | 37.65 | 8.43 | 13.54 |
| SD | 2,315 | 1.69 | 96.58 | 34.25 | 55.12 | 42.81 | 1.47 | 34.13 | 10.97 |
| UT | 11,209 | 1.69 | 97.02 | 69.72 | 30.26 | 20.94 | 71.22 | 3.40 | 4.43 |
| ND | 1,834 | 1.66 | 97.10 | 64.99 | 35.01 | 50.16 | 19.47 | 18.59 | 11.78 |
| KY | 10,999 | 1.60 | 97.54 | 23.99 | 76.00 | 38.20 | 34.15 | 13.36 | 14.29 |
| AR | 7,666 | 1.58 | 97.84 | 20.77 | 78.57 | 51.59 | 11.86 | 15.35 | 20.62 |
| LA | 11,164 | 1.55 | 98.29 | 16.61 | 81.56 | 42.85 | 33.41 | 9.35 | 14.00 |
| SC | 11,677 | 1.52 | 98.76 | 77.90 | 21.15 | 22.47 | 50.58 | 6.74 | 19.35 |
| ME | 2,668 | 1.50 | 98.87 | 12.67 | 87.22 | 26.57 | 25.71 | 14.92 | 32.80 |
| DC | 1,212 | 1.47 | 98.91 | 51.07 | 48.93 | 100.00 | 0.00 | 0.00 | 0.00 |
| AL | 10,700 | 1.44 | 99.34 | 62.65 | 37.21 | 37.04 | 32.94 | 8.28 | 21.31 |
| ID | 3,739 | 1.26 | 99.49 | 37.92 | 60.42 | 42.18 | 23.94 | 19.02 | 13.35 |
| NM | 3,925 | 1.16 | 99.65 | 29.63 | 66.83 | 53.07 | 11.59 | 19.13 | 14.52 |
| MS | 5,071 | 1.03 | 99.85 | 48.81 | 50.92 | 9.76 | 33.76 | 21.18 | 35.02 |
| WY | 774 | 0.82 | 99.88 | 67.96 | 31.65 | 31.78 | 1.55 | 48.19 | 18.48 |
| MT | 1,134 | 0.77 | 99.93 | 10.32 | 89.68 | 39.24 | 1.76 | 32.01 | 26.98 |
| WV | 1,800 | 0.65 | 100.00 | 82.06 | 17.94 | 41.67 | 22.61 | 16.44 | 19.28 |

TABLE IIO
2015-2016 Black Student Enrollment Nationally and by State for Title I Status and Locale With Cumulative Percentage and Ordered by Percent Enrolled in States

| State | N of Black | $\%$ of State Pop | National Cumulative \% | Non-Title I \% | Title I \% | City \% | Suburb\% | Town \% | Rural \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| National | 7,791,746 | 15.44 |  | 18.53 | 77.05 | 45.51 | 34.93 | 7.27 | 11.26 |
| DC | 58,142 | 70.61 | 0.75 | 9.54 | 90.42 | 99.90 | 0.00 | 0.00 | 0.06 |
| MS | 244,117 | 49.69 | 3.88 | 17.92 | 81.63 | 16.18 | 8.94 | 37.67 | 36.76 |
| LA | 318,457 | 44.09 | 7.97 | 5.42 | 93.01 | 43.43 | 22.80 | 15.30 | 17.57 |
| GA | 653,602 | 37.00 | 16.35 | 21.76 | 77.33 | 24.13 | 46.69 | 9.49 | 18.50 |
| MD | 310,665 | 34.76 | 20.34 | 31.60 | 67.88 | 29.53 | 63.09 | 1.42 | 5.73 |
| SC | 264,533 | 34.53 | 23.74 | 47.64 | 51.59 | 24.11 | 27.82 | 15.54 | 32.00 |
| AL | 249,349 | 33.46 | 26.94 | 25.54 | 73.50 | 40.71 | 19.98 | 11.83 | 26.48 |
| DE | 43,344 | 31.20 | 27.49 | 29.95 | 68.29 | 24.49 | 48.55 | 9.58 | 13.79 |
| NC | 399,613 | 25.75 | 32.62 | 16.28 | 83.59 | 44.19 | 16.67 | 12.22 | 26.81 |
| VA | 294,509 | 22.92 | 36.40 | 59.74 | 40.09 | 39.07 | 36.78 | 6.19 | 17.79 |
| TN | 225,330 | 22.57 | 39.29 | 7.36 | 91.74 | 67.48 | 12.33 | 8.58 | 11.36 |
| FL | 627,166 | 22.56 | 47.34 | 7.73 | 92.22 | 35.62 | 54.04 | 3.50 | 6.82 |
| AR | 98,304 | 20.29 | 48.60 | 5.33 | 92.15 | 38.90 | 17.41 | 24.22 | 18.08 |
| MI | 278,579 | 18.03 | 52.18 | 20.82 | 78.60 | 54.48 | 38.29 | 1.79 | 3.48 |
| NY | 480,141 | 17.61 | 58.34 | 8.45 | 39.56 | 74.52 | 19.15 | 2.17 | 1.86 |
| IL | 350,962 | 17.31 | 62.85 | 7.76 | 88.34 | 56.89 | 37.69 | 2.54 | 2.24 |
| OH | 281,833 | 16.05 | 66.46 | 7.58 | 91.46 | 56.95 | 37.22 | 2.37 | 2.76 |
| MO | 148,626 | 15.99 | 68.37 | 16.11 | 82.69 | 41.28 | 44.90 | 7.08 | 5.59 |
| NJ | 217,661 | 15.88 | 71.16 | 16.16 | 83.11 | 27.02 | 65.97 | 1.79 | 4.74 |
| PA | 255,874 | 14.83 | 74.45 | 8.83 | 89.98 | 57.47 | 36.06 | 1.96 | 3.82 |
| CT | 68,841 | 12.84 | 75.33 | 38.91 | 60.31 | 60.14 | 36.29 | 0.58 | 2.22 |
| TX | 664,766 | 12.54 | 83.86 | 12.92 | 86.69 | 48.52 | 35.42 | 6.34 | 9.57 |
| IN | 126,401 | 12.24 | 85.49 | 9.34 | 90.44 | 68.73 | 24.52 | 2.21 | 4.29 |
| KY | 72,842 | 10.59 | 86.42 | 9.47 | 90.47 | 36.51 | 39.08 | 15.05 | 9.30 |
| NV | 49,238 | 10.46 | 87.05 | 25.81 | 73.84 | 48.47 | 47.95 | 0.86 | 2.68 |
| MN | 92,069 | 10.45 | 88.23 | 38.84 | 60.44 | 48.51 | 41.26 | 5.67 | 3.69 |
| WI | 81,912 | 9.44 | 89.29 | 19.47 | 80.35 | 77.10 | 16.74 | 2.96 | 3.19 |
| OK | 61,966 | 8.91 | 90.08 | 9.41 | 90.20 | 54.68 | 21.47 | 11.47 | 12.00 |
| MA | 84,200 | 8.84 | 91.16 | 27.00 | 70.08 | 46.97 | 48.86 | 0.52 | 2.29 |
| RI | 11,889 | 8.40 | 91.31 | 3.84 | 95.57 | 43.28 | 54.92 | 0.00 | 1.32 |
| KS | 35,302 | 7.19 | 91.77 | 12.74 | 85.36 | 62.14 | 13.20 | 13.85 | 9.17 |
| NE | 21,909 | 6.91 | 92.05 | 55.98 | 43.96 | 78.95 | 11.61 | 4.62 | 4.79 |
| CA | 364,822 | 5.82 | 96.73 | 19.93 | 70.22 | 46.13 | 40.73 | 1.99 | 3.05 |
| IA | 28,517 | 5.69 | 97.10 | 21.60 | 77.93 | 66.98 | 11.01 | 12.88 | 8.65 |
| AZ | 60,154 | 5.31 | 97.87 | 4.90 | 93.20 | 57.05 | 31.33 | 6.11 | 5.35 |
| ND | 5,182 | 4.69 | 97.93 | 55.77 | 44.23 | 43.07 | 22.93 | 20.84 | 13.16 |
| CO | 41,611 | 4.63 | 98.47 | 57.33 | 42.47 | 75.41 | 18.84 | 1.43 | 4.12 |
| WA | 48,709 | 4.45 | 99.09 | 31.08 | 68.55 | 53.66 | 39.88 | 3.32 | 2.77 |
| WV | 12,360 | 4.44 | 99.25 | 60.83 | 39.03 | 37.92 | 21.67 | 19.41 | 20.87 |
| ME | 6,063 | 3.41 | 99.33 | 4.83 | 95.17 | 65.03 | 11.61 | 6.83 | 16.53 |
| AK | 4,153 | 3.15 | 99.38 | 34.99 | 64.48 | 71.71 | 4.07 | 14.52 | 9.27 |
| SD | 3,933 | 2.87 | 99.43 | 36.10 | 63.36 | 69.31 | 0.53 | 14.42 | 15.20 |
| VT | 1,997 | 2.41 | 99.46 | 23.49 | 76.31 | 59.41 | 34.25 | 43.90 | 50.99 |
| OR | 13,544 | 2.36 | 99.63 | 49.56 | 48.57 | 63.94 | 22.64 | 7.31 | 4.29 |
| NM | 6,712 | 1.98 | 99.72 | 9.36 | 85.82 | 40.45 | 9.30 | 30.54 | 16.92 |
| HI | 3,529 | 1.93 | 99.76 | 61.63 | 38.37 | 22.36 | 68.77 | 4.96 | 3.91 |
| NH | 3,513 | 1.92 | 99.81 | 8.37 | 91.43 | 44.89 | 23.60 | 18.13 | 13.18 |
| UT | 9,205 | 1.38 | 99.93 | 62.12 | 37.87 | 21.80 | 68.21 | 4.80 | 5.17 |
| WY | 1,081 | 1.14 | 99.94 | 63.55 | 36.26 | 44.96 | 4.26 | 35.52 | 15.17 |
| ID | 3,152 | 1.07 | 99.98 | 25.38 | 73.22 | 42.73 | 23.51 | 20.94 | 11.64 |
| MT | 1,367 | 0.93 | 100.00 | 9.95 | 89.83 | 43.31 | 1.76 | 29.85 | 24.87 |

TABLE III
2015-2016 Latinx Student Enrollment Nationally and by State for Title I Status and Locale With Cumulative Percentage and Ordered by Percent Enrolled in States

| State | N of Latinx | \% of State Pop | National Cumulative \% | Non-Title I \% | Title I \% | City \% | Suburb\% | Town \% | Rural \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| National | 13,028,157 | 25.82 |  | 16.14 | 78.60 | 41.44 | 39.27 | 8.34 | 9.38 |
| NM | 207,162 | 61.08 | 1.59 | 5.77 | 90.35 | 35.11 | 14.87 | 24.67 | 23.34 |
| CA | 3,382,639 | 53.94 | 27.55 | 14.26 | 79.21 | 40.56 | 43.37 | 6.14 | 4.95 |
| TX | 2,776,400 | 52.36 | 48.86 | 8.98 | 90.68 | 49.44 | 28.16 | 9.55 | 12.72 |
| AZ | 504,233 | 44.52 | 52.74 | 3.27 | 95.29 | 56.71 | 24.75 | 10.81 | 7.60 |
| NV | 195,981 | 41.64 | 54.24 | 26.18 | 73.61 | 49.10 | 41.30 | 5.29 | 4.25 |
| CO | 300,251 | 33.38 | 56.54 | 51.88 | 48.02 | 48.05 | 33.22 | 9.71 | 8.92 |
| FL | 878,683 | 31.61 | 63.29 | 11.20 | 88.72 | 20.99 | 67.27 | 3.53 | 8.18 |
| NY | 703,077 | 25.79 | 68.69 | 10.05 | 32.05 | 65.93 | 27.17 | 3.11 | 2.71 |
| IL | 517,100 | 25.51 | 72.65 | 9.83 | 88.06 | 43.59 | 50.36 | 3.46 | 2.49 |
| NJ | 348,680 | 25.44 | 75.33 | 15.72 | 83.55 | 18.19 | 76.08 | 1.89 | 3.22 |
| RI | 34,030 | 24.04 | 75.59 | 4.21 | 94.58 | 52.92 | 44.74 | 0.00 | 1.25 |
| CT | 123,328 | 23.01 | 76.54 | 35.52 | 63.93 | 50.69 | 42.57 | 2.69 | 3.33 |
| WA | 247,487 | 22.60 | 78.44 | 29.78 | 69.98 | 33.23 | 36.61 | 17.99 | 11.94 |
| OR | 129,030 | 22.50 | 79.43 | 46.60 | 52.61 | 35.98 | 28.61 | 26.09 | 8.76 |
| KS | 92,789 | 18.90 | 80.14 | 8.68 | 89.48 | 41.23 | 11.48 | 29.31 | 16.23 |
| NE | 57,152 | 18.03 | 80.58 | 41.46 | 58.38 | 48.51 | 14.09 | 27.06 | 10.33 |
| MA | 171,251 | 17.97 | 81.89 | 19.07 | 79.33 | 35.29 | 60.16 | 0.83 | 2.79 |
| ID | 50,934 | 17.21 | 82.28 | 10.12 | 89.49 | 15.88 | 30.92 | 28.46 | 24.52 |
| NC | 252,483 | 16.27 | 84.22 | 16.22 | 83.71 | 34.53 | 21.93 | 10.22 | 33.28 |
| UT | 107,681 | 16.20 | 85.05 | 56.31 | 43.55 | 29.08 | 57.94 | 7.28 | 5.56 |
| DE | 22,068 | 15.88 | 85.22 | 21.37 | 76.68 | 11.35 | 54.78 | 15.35 | 16.05 |
| OK | 110,292 | 15.85 | 86.07 | 7.90 | 91.92 | 46.76 | 16.62 | 20.73 | 15.73 |
| MD | 141,341 | 15.82 | 87.15 | 26.40 | 73.50 | 19.00 | 73.66 | 1.63 | 5.63 |
| DC | 12,719 | 15.45 | 87.25 | 17.13 | 82.85 | 99.98 | 0.00 | 0.00 | 0.00 |
| GA | 256,676 | 14.53 | 89.22 | 28.49 | 71.02 | 15.37 | 58.24 | 7.25 | 18.49 |
| VA | 184,849 | 14.39 | 90.64 | 64.55 | 35.18 | 22.19 | 61.62 | 3.29 | 12.63 |
| WY | 12,768 | 13.48 | 90.73 | 53.31 | 46.27 | 29.61 | 3.24 | 48.86 | 18.22 |
| AR | 59,617 | 12.30 | 91.19 | 6.84 | 91.18 | 47.47 | 8.48 | 19.25 | 22.94 |
| HI | 22,007 | 12.05 | 91.36 | 40.29 | 59.71 | 16.47 | 49.33 | 23.92 | 10.27 |
| WI | 98,360 | 11.33 | 92.12 | 32.33 | 67.52 | 52.09 | 22.95 | 14.14 | 10.76 |
| IN | 114,120 | 11.05 | 92.99 | 12.45 | 87.44 | 41.50 | 33.06 | 11.64 | 13.70 |
| PA | 179,179 | 10.39 | 94.37 | 11.30 | 88.05 | 52.18 | 37.01 | 2.57 | 7.63 |
| IA | 51,283 | 10.23 | 94.76 | 16.71 | 83.10 | 40.87 | 7.72 | 32.98 | 18.24 |
| TN | 89,684 | 8.98 | 95.45 | 9.08 | 90.70 | 51.39 | 17.80 | 14.47 | 16.29 |
| MN | 76,656 | 8.70 | 96.04 | 44.28 | 55.49 | 28.95 | 38.02 | 19.91 | 12.19 |
| SC | 64,202 | 8.38 | 96.53 | 53.51 | 46.19 | 24.10 | 40.48 | 9.38 | 25.87 |
| MI | 111,530 | 7.22 | 97.39 | 29.07 | 70.41 | 36.56 | 35.83 | 10.54 | 15.11 |
| AL | 50,217 | 6.74 | 97.77 | 29.90 | 69.16 | 26.53 | 21.08 | 20.09 | 31.23 |
| AK | 8,797 | 6.67 | 97.84 | 43.48 | 56.03 | 60.21 | 5.57 | 19.22 | 14.71 |
| KY | 41,045 | 5.97 | 98.15 | 8.42 | 91.55 | 32.51 | 24.05 | 22.35 | 21.08 |
| LA | 42,695 | 5.91 | 98.48 | 7.84 | 90.86 | 35.00 | 39.57 | 9.22 | 15.67 |
| MO | 54,325 | 5.85 | 98.90 | 17.25 | 81.31 | 31.39 | 32.81 | 18.73 | 15.67 |
| NH | 9,822 | 5.38 | 98.98 | 12.02 | 87.90 | 56.40 | 25.74 | 6.56 | 11.23 |
| SD | 6,950 | 5.07 | 99.03 | 23.31 | 72.42 | 44.07 | 1.84 | 25.50 | 24.32 |
| OH | 88,559 | 5.04 | 99.71 | 14.57 | 84.10 | 30.74 | 45.55 | 11.24 | 11.91 |
| ND | 4,700 | 4.26 | 99.74 | 44.51 | 55.49 | 22.77 | 9.30 | 34.94 | 33.00 |
| MT | 5,979 | 4.06 | 99.79 | 8.16 | 91.82 | 37.51 | 2.83 | 33.37 | 26.28 |
| MS | 18,166 | 3.70 | 99.93 | 27.38 | 72.41 | 15.31 | 21.27 | 26.69 | 36.52 |
| ME | 3,482 | 1.96 | 99.96 | 9.28 | 90.55 | 26.74 | 16.60 | 18.58 | 38.08 |
| VT | 1,379 | 1.66 | 99.97 | 33.28 | 66.72 | 11.52 | 17.37 | 37.35 | 57.88 |
| WV | 4,319 | 1.55 | 100.00 | 63.21 | 36.74 | 25.03 | 22.71 | 20.38 | 31.86 |

TABLE I12
2015-2016 Native Hawaiian/Pacific Islander Student Enrollment Nationally and by State for Title I Status and Locale With Cumulative Percentage and Ordered by Percent Enrolled in States

| State | N of NHPI | $\begin{gathered} \text { \% of State } \\ \text { Pop } \end{gathered}$ | National Cumulative \% | $\begin{gathered} \text { Non-Title } \\ \text { I \% } \end{gathered}$ | Title I \% | City \% | Suburb\% | Town \% | Rural \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| National | 194,685 | 0.39 |  | 29.38 | 66.95 | 36.01 | 40.19 | 12.62 | 10.28 |
| HI | 55,642 | 30.46 | 28.58 | 26.29 | 73.71 | 20.07 | 40.27 | 26.55 | 13.11 |
| AK | 3,598 | 2.73 | 30.43 | 27.96 | 71.87 | 74.54 | 1.67 | 14.34 | 9.42 |
| UT | 10,109 | 1.52 | 35.62 | 64.93 | 35.07 | 24.13 | 68.52 | 3.39 | 3.96 |
| NV | 6,515 | 1.38 | 38.97 | 43.13 | 56.82 | 55.06 | 37.50 | 2.81 | 4.62 |
| WA | 11,391 | 1.04 | 44.82 | 29.21 | 70.53 | 42.42 | 51.20 | 2.75 | 3.40 |
| AR | 3,499 | 0.72 | 46.62 | 4.26 | 93.57 | 60.93 | 3.46 | 5.94 | 27.52 |
| OR | 4,118 | 0.72 | 48.73 | 47.91 | 51.75 | 48.70 | 31.47 | 12.66 | 6.90 |
| CA | 39,708 | 0.63 | 69.13 | 28.05 | 67.51 | 48.40 | 42.04 | 3.19 | 3.38 |
| ID | 1,035 | 0.35 | 69.66 | 24.44 | 74.40 | 28.21 | 29.28 | 22.42 | 19.13 |
| AZ | 3,747 | 0.33 | 71.58 | 6.81 | 91.41 | 55.70 | 27.70 | 8.83 | 7.63 |
| DE | 456 | 0.33 | 71.82 | 10.75 | 89.04 | 7.24 | 79.61 | 5.26 | 7.68 |
| OK | 2,276 | 0.33 | 72.99 | 9.14 | 90.07 | 22.28 | 12.96 | 51.36 | 12.61 |
| ND | 355 | 0.32 | 73.17 | 57.18 | 42.82 | 33.52 | 6.20 | 29.01 | 31.27 |
| M0 | 2,297 | 0.25 | 74.35 | 19.94 | 79.32 | 28.60 | 27.64 | 18.89 | 24.16 |
| NY | 6,640 | 0.24 | 77.76 | 8.27 | 18.61 | 76.76 | 14.73 | 2.77 | 3.92 |
| MT | 355 | 0.24 | 77.94 | 8.17 | 91.83 | 32.39 | 2.54 | 30.70 | 34.37 |
| CO | 2,091 | 0.23 | 79.02 | 66.86 | 32.95 | 52.03 | 35.44 | 3.68 | 8.66 |
| NJ | 3,030 | 0.22 | 80.57 | 31.25 | 68.58 | 14.19 | 79.24 | 1.22 | 5.18 |
| IA | 1,103 | 0.22 | 81.14 | 23.12 | 76.70 | 50.59 | 6.62 | 26.84 | 15.78 |
| KS | 1,026 | 0.21 | 81.67 | 13.06 | 85.67 | 28.17 | 11.70 | 31.29 | 27.58 |
| WY | 180 | 0.19 | 81.76 | 54.44 | 45.56 | 18.33 | 1.67 | 49.44 | 30.56 |
| VA | 2,003 | 0.16 | 82.79 | 75.04 | 24.81 | 35.35 | 44.23 | 2.55 | 17.72 |
| FL | 4,227 | 0.15 | 84.96 | 16.54 | 83.30 | 25.58 | 60.88 | 3.59 | 9.92 |
| NE | 478 | 0.15 | 85.20 | 65.90 | 33.89 | 39.54 | 16.11 | 29.50 | 14.85 |
| NM | 489 | 0.14 | 85.45 | 12.68 | 83.64 | 40.70 | 9.61 | 28.63 | 19.22 |
| MD | 1,274 | 0.14 | 86.11 | 42.94 | 56.91 | 21.82 | 65.70 | 2.12 | 10.20 |
| RI | 200 | 0.14 | 86.21 | 10.50 | 88.00 | 31.00 | 59.50 | 0.00 | 9.50 |
| SC | 1,042 | 0.14 | 86.75 | 68.71 | 31.29 | 28.69 | 40.69 | 9.40 | 21.21 |
| TX | 7,122 | 0.13 | 90.41 | 19.46 | 80.27 | 174.19 | 192.37 | 40.22 | 56.45 |
| NC | 1,946 | 0.13 | 91.41 | 21.94 | 77.90 | 37.46 | 27.08 | 7.81 | 27.54 |
| DC | 93 | 0.11 | 91.45 | 29.03 | 69.89 | 98.92 | 0.00 | 0.00 | 0.00 |
| GA | 1,971 | 0.11 | 92.47 | 34.15 | 65.50 | 25.72 | 47.03 | 5.18 | 21.56 |
| VT | 92 | 0.11 | 92.51 | 32.61 | 67.39 | 2.22 | 15.56 | 33.33 | 51.11 |
| AL | 810 | 0.11 | 92.93 | 42.96 | 55.80 | 27.65 | 26.42 | 15.93 | 28.52 |
| IL | 2,202 | 0.11 | 94.06 | 23.02 | 72.16 | 42.37 | 42.23 | 6.09 | 9.17 |
| CT | 574 | 0.11 | 94.35 | 50.17 | 49.48 | 27.35 | 53.66 | 4.88 | 13.59 |
| MN | 924 | 0.10 | 94.83 | 59.63 | 40.26 | 13.56 | 25.38 | 15.29 | 32.00 |
| TN | 1,037 | 0.10 | 95.36 | 19.67 | 80.33 | 38.38 | 24.30 | 10.22 | 27.10 |
| KY | 704 | 0.10 | 95.72 | 8.52 | 91.48 | 19.60 | 40.63 | 17.33 | 22.44 |
| ME | 175 | 0.10 | 95.81 | 16.00 | 84.00 | 10.86 | 29.71 | 12.57 | 46.86 |
| MA | 931 | 0.10 | 96.29 | 43.29 | 55.21 | 21.37 | 67.99 | 1.72 | 8.27 |
| OH | 1,692 | 0.10 | 97.16 | 18.38 | 81.26 | 16.84 | 58.51 | 11.05 | 13.30 |
| MI | 1,442 | 0.09 | 97.90 | 44.38 | 54.30 | 18.17 | 44.73 | 14.22 | 20.18 |
| NH | 169 | 0.09 | 97.99 | 8.88 | 91.12 | 8.88 | 34.91 | 8.28 | 47.93 |
| SD | 122 | 0.09 | 98.05 | 29.51 | 68.85 | 18.85 | 0.00 | 50.00 | 29.51 |
| WI | 746 | 0.09 | 98.43 | 42.63 | 56.97 | 27.48 | 27.88 | 18.36 | 26.27 |
| LA | 592 | 0.08 | 98.74 | 9.46 | 84.46 | 40.88 | 27.20 | 13.85 | 13.51 |
| PA | 1,308 | 0.08 | 99.41 | 19.42 | 80.05 | 19.42 | 53.52 | 10.02 | 16.59 |
| IN | 744 | 0.07 | 99.79 | 21.24 | 78.49 | 42.20 | 22.98 | 13.84 | 20.56 |
| MS | 266 | 0.05 | 99.93 | 29.70 | 70.30 | 26.32 | 24.81 | 12.78 | 36.09 |
| WV | 139 | 0.05 | 100.00 | 72.66 | 27.34 | 37.41 | 22.30 | 15.11 | 25.18 |

TABLE I13
2015-2016 Two or More Races Student Enrollment Nationally and by State for Title I Status and Locale With Cumulative Percentage and Ordered by Percent Enrolled in States

| State | N of TMR | $\begin{gathered} \text { \% of State } \\ \text { Pop } \end{gathered}$ | National Cumulative \% | $\begin{gathered} \text { Non-Title } \\ \text { I \% } \\ \hline \end{gathered}$ | Title I \% | City \% | Suburb\% | Town \% | Rural \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| National | 1,746,453 | 3.46 |  | 33.59 | 63.97 | 31.57 | 42.43 | 10.05 | 14.85 |
| HI | 22,418 | 12.27 | 1.28 | 48.00 | 52.00 | 22.54 | 47.35 | 22.94 | 7.17 |
| AK | 13,739 | 10.41 | 2.07 | 45.51 | 53.88 | 52.94 | 7.68 | 20.60 | 18.51 |
| OK | 57,426 | 8.25 | 5.36 | 12.26 | 87.54 | 19.85 | 24.05 | 22.76 | 25.57 |
| WA | 82,138 | 7.50 | 10.06 | 31.91 | 67.71 | 36.31 | 47.91 | 7.35 | 8.06 |
| NV | 28,382 | 6.03 | 11.69 | 50.47 | 49.31 | 53.29 | 36.15 | 5.32 | 5.20 |
| OR | 33,076 | 5.77 | 13.58 | 63.58 | 35.08 | 41.42 | 28.73 | 17.42 | 11.24 |
| VA | 65,982 | 5.13 | 17.36 | 74.28 | 25.60 | 26.50 | 46.96 | 5.73 | 20.69 |
| KS | 24,253 | 4.94 | 18.75 | 18.89 | 79.88 | 36.45 | 18.18 | 25.51 | 18.78 |
| OH | 83,822 | 4.77 | 23.55 | 16.70 | 82.52 | 27.57 | 46.41 | 12.84 | 12.70 |
| IN | 47,935 | 4.64 | 26.29 | 18.62 | 81.16 | 44.54 | 26.82 | 11.42 | 16.98 |
| MD | 38,361 | 4.29 | 28.49 | 49.37 | 50.49 | 17.93 | 61.77 | 4.25 | 15.93 |
| RI | 5,884 | 4.16 | 28.83 | 12.53 | 86.79 | 29.03 | 66.59 | 0.00 | 3.91 |
| NC | 60,844 | 3.92 | 32.31 | 23.84 | 76.02 | 28.64 | 25.47 | 11.27 | 34.52 |
| MA | 37,268 | 3.91 | 34.44 | 39.69 | 59.66 | 21.03 | 69.54 | 1.89 | 7.13 |
| CA | 243,199 | 3.88 | 48.37 | 40.23 | 51.03 | 38.24 | 47.43 | 3.88 | 5.32 |
| CO | 34,548 | 3.84 | 50.35 | 76.59 | 23.05 | 44.78 | 39.83 | 4.74 | 10.29 |
| MN | 33,198 | 3.77 | 52.25 | 49.42 | 50.39 | 23.01 | 44.66 | 16.44 | 15.58 |
| SC | 27,148 | 3.54 | 53.80 | 59.47 | 40.08 | 18.23 | 43.62 | 8.32 | 29.48 |
| IA | 17,659 | 3.52 | 54.81 | 27.50 | 72.42 | 46.10 | 14.72 | 19.70 | 19.40 |
| NE | 10,960 | 3.46 | 55.44 | 61.34 | 38.48 | 61.70 | 15.00 | 12.92 | 10.30 |
| SD | 4,732 | 3.45 | 55.71 | 25.08 | 74.11 | 40.87 | 3.17 | 28.04 | 27.11 |
| PA | 59,383 | 3.44 | 59.11 | 15.02 | 84.41 | 33.30 | 51.71 | 5.81 | 8.81 |
| KY | 23,447 | 3.41 | 60.45 | 10.53 | 89.44 | 22.62 | 27.79 | 25.54 | 24.03 |
| GA | 59,975 | 3.39 | 63.89 | 41.89 | 57.25 | 15.31 | 46.27 | 10.01 | 27.43 |
| FL | 93,314 | 3.36 | 69.23 | 16.71 | 83.17 | 29.18 | 54.23 | 4.41 | 12.12 |
| MI | 51,648 | 3.34 | 72.19 | 37.72 | 61.47 | 26.34 | 46.82 | 9.52 | 14.94 |
| IL | 65,571 | 3.23 | 75.94 | 20.69 | 75.17 | 26.16 | 51.12 | 11.94 | 10.21 |
| MO | 30,010 | 3.23 | 77.66 | 23.70 | 75.69 | 23.97 | 41.68 | 18.25 | 15.59 |
| WI | 26,742 | 3.08 | 79.19 | 45.05 | 54.63 | 35.90 | 32.83 | 15.29 | 15.93 |
| DE | 3,963 | 2.85 | 79.42 | 21.98 | 76.36 | 10.30 | 56.95 | 16.58 | 14.23 |
| CT | 15,069 | 2.81 | 80.28 | 46.66 | 52.90 | 24.45 | 58.48 | 2.57 | 13.83 |
| MT | 4,047 | 2.75 | 80.51 | 10.40 | 89.60 | 39.83 | 2.00 | 29.16 | 29.01 |
| NH | 5,004 | 2.74 | 80.80 | 11.21 | 88.77 | 20.36 | 33.49 | 8.61 | 37.51 |
| VT | 2,248 | 2.71 | 80.93 | 24.60 | 75.27 | 37.77 | 17.52 | 36.43 | 51.27 |
| AZ | 30,241 | 2.67 | 82.66 | 8.27 | 89.64 | 44.90 | 36.02 | 10.58 | 8.31 |
| ID | 7,845 | 2.65 | 83.11 | 23.33 | 76.28 | 29.17 | 31.05 | 15.54 | 23.94 |
| WV | 7,142 | 2.56 | 83.52 | 53.78 | 46.12 | 34.99 | 23.51 | 16.97 | 24.46 |
| UT | 16,059 | 2.42 | 84.44 | 73.77 | 26.13 | 20.44 | 65.08 | 5.82 | 8.57 |
| AR | 11,421 | 2.36 | 85.09 | 10.65 | 88.41 | 35.18 | 16.07 | 21.26 | 26.56 |
| TX | 112,959 | 2.13 | 91.56 | 30.38 | 69.08 | 34.11 | 38.62 | 9.07 | 17.81 |
| TN | 21,080 | 2.11 | 92.77 | 18.51 | 81.36 | 42.59 | 22.17 | 12.19 | 22.99 |
| WY | 1,978 | 2.09 | 92.88 | 56.72 | 42.47 | 35.44 | 3.99 | 40.50 | 19.72 |
| ME | 3,610 | 2.03 | 93.09 | 8.86 | 90.91 | 24.74 | 17.51 | 17.01 | 40.75 |
| LA | 14,640 | 2.03 | 93.93 | 10.77 | 87.66 | 22.18 | 31.20 | 18.27 | 28.05 |
| NY | 54,920 | 2.01 | 97.07 | 20.89 | 57.63 | 38.24 | 37.05 | 12.42 | 11.45 |
| NJ | 26,805 | 1.96 | 98.61 | 34.59 | 65.29 | 4.60 | 86.21 | 1.87 | 7.22 |
| DC | 1,575 | 1.91 | 98.70 | 49.33 | 50.60 | 99.94 | 0.00 | 0.00 | 0.00 |
| NM | 5,545 | 1.63 | 99.01 | 19.06 | 77.19 | 51.02 | 15.06 | 15.62 | 17.26 |
| AL | 12,080 | 1.62 | 99.70 | 43.59 | 55.56 | 29.56 | 19.56 | 17.52 | 32.13 |
| ND | 1,285 | 1.16 | 99.78 | 50.74 | 49.26 | 34.01 | 5.29 | 18.05 | 42.65 |
| MS | 3,875 | 0.79 | 100.00 | 30.68 | 69.24 | 9.11 | 30.58 | 17.65 | 42.58 |

TABLE I14
2015-2016 White Student Enrollment Nationally and by State for Title I Status and Locale With Cumulative Percentage and Ordered by Percent Enrolled in States

| State | N of White | $\begin{gathered} \text { \% of State } \\ \text { Pop } \end{gathered}$ | National Cumulative \% | Non-Title I \% | Title I\% | City \% | Suburb\% | Town \% | Rural \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| National | 24,675,188 | 48.90 |  | 38.16 | 60.10 | 17.90 | 40.04 | 14.59 | 26.85 |
| WV | 252,470 | 90.65 | 1.02 | 62.65 | 37.18 | 13.28 | 20.24 | 21.83 | 44.61 |
| VT | 74,904 | 90.34 | 1.33 | 31.95 | 67.98 | 5.64 | 9.06 | 28.89 | 59.53 |
| ME | 160,328 | 90.30 | 1.98 | 11.18 | 88.64 | 9.77 | 16.50 | 17.64 | 56.10 |
| NH | 157,845 | 86.42 | 2.62 | 9.94 | 90.02 | 10.51 | 37.92 | 14.56 | 36.98 |
| MT | 116,803 | 79.25 | 3.09 | 10.50 | 89.42 | 24.63 | 2.01 | 36.52 | 36.77 |
| ND | 86,727 | 78.53 | 3.44 | 54.68 | 45.32 | 26.82 | 11.04 | 20.65 | 41.49 |
| WY | 74,292 | 78.44 | 3.74 | 59.95 | 38.89 | 23.31 | 1.61 | 44.79 | 29.74 |
| KY | 537,905 | 78.21 | 5.92 | 10.33 | 89.65 | 11.40 | 19.37 | 27.24 | 41.98 |
| IA | 388,842 | 77.56 | 7.50 | 36.37 | 63.43 | 21.34 | 13.15 | 25.93 | 39.40 |
| ID | 224,961 | 76.01 | 8.41 | 22.88 | 76.43 | 23.76 | 27.39 | 23.64 | 24.69 |
| UT | 503,468 | 75.72 | 10.45 | 77.35 | 22.50 | 12.09 | 65.43 | 11.41 | 10.92 |
| SD | 103,615 | 75.62 | 10.87 | 28.09 | 71.31 | 23.49 | 1.91 | 31.20 | 42.81 |
| MO | 672,478 | 72.37 | 13.60 | 22.68 | 76.84 | 11.46 | 31.22 | 24.20 | 32.70 |
| OH | 1,261,116 | 71.82 | 18.71 | 26.98 | 72.14 | 8.94 | 45.28 | 16.08 | 29.30 |
| WI | 616,919 | 71.08 | 21.21 | 52.19 | 47.57 | 18.20 | 30.32 | 23.18 | 28.19 |
| IN | 718,918 | 69.62 | 24.12 | 26.46 | 73.31 | 20.00 | 26.42 | 17.65 | 35.73 |
| MN | 604,112 | 68.59 | 26.57 | 61.19 | 38.59 | 13.49 | 34.20 | 25.19 | 26.77 |
| NE | 213,961 | 67.50 | 27.44 | 66.53 | 33.22 | 30.43 | 15.32 | 22.28 | 31.91 |
| PA | 1,163,312 | 67.44 | 32.15 | 26.76 | 72.63 | 6.97 | 55.46 | 12.08 | 25.11 |
| MI | 1,042,015 | 67.44 | 36.37 | 44.24 | 55.11 | 12.67 | 44.38 | 14.95 | 26.13 |
| KS | 318,837 | 64.94 | 37.66 | 25.03 | 74.25 | 19.12 | 18.75 | 26.76 | 34.76 |
| TN | 640,708 | 64.17 | 40.26 | 19.79 | 80.05 | 17.30 | 23.18 | 20.07 | 39.40 |
| OR | 362,560 | 63.23 | 41.73 | 64.36 | 34.92 | 31.81 | 25.70 | 24.70 | 17.22 |
| MA | 595,411 | 62.48 | 44.14 | 54.65 | 44.80 | 8.04 | 77.34 | 1.74 | 12.51 |
| AR | 300,909 | 62.10 | 45.36 | 12.00 | 87.20 | 19.54 | 14.50 | 24.44 | 40.77 |
| RI | 84,072 | 59.40 | 45.70 | 22.21 | 76.79 | 12.56 | 71.79 | 0.00 | 15.27 |
| CT | 299,991 | 55.96 | 46.92 | 52.44 | 47.45 | 14.48 | 63.95 | 3.80 | 17.58 |
| WA | 610,446 | 55.75 | 49.39 | 32.52 | 67.21 | 29.65 | 43.21 | 12.91 | 13.98 |
| AL | 413,547 | 55.50 | 51.07 | 45.74 | 53.87 | 12.97 | 22.56 | 15.51 | 48.40 |
| CO | 486,807 | 54.11 | 53.04 | 82.45 | 17.25 | 29.53 | 43.16 | 9.67 | 17.36 |
| SC | 395,034 | 51.56 | 54.64 | 70.64 | 28.97 | 16.17 | 38.20 | 9.04 | 36.29 |
| VA | 648,673 | 50.48 | 57.27 | 76.59 | 23.32 | 16.67 | 40.59 | 9.36 | 33.28 |
| OK | 349,434 | 50.22 | 58.69 | 14.53 | 85.20 | 14.10 | 25.76 | 24.31 | 35.59 |
| NC | 768,453 | 49.52 | 61.80 | 32.45 | 67.36 | 18.45 | 27.62 | 9.73 | 44.11 |
| IL | 989,357 | 48.80 | 65.81 | 22.12 | 73.28 | 12.93 | 50.95 | 17.15 | 18.73 |
| AK | 62,891 | 47.67 | 66.07 | 55.13 | 44.28 | 29.83 | 11.77 | 33.52 | 24.79 |
| NJ | 638,333 | 46.58 | 68.65 | 38.79 | 61.08 | 1.74 | 83.51 | 2.58 | 12.09 |
| DE | 63,437 | 45.66 | 68.91 | 40.56 | 57.89 | 6.96 | 49.43 | 18.60 | 23.19 |
| LA | 329,683 | 45.65 | 70.25 | 15.88 | 82.36 | 15.13 | 32.84 | 13.50 | 37.95 |
| NY | 1,222,303 | 44.84 | 75.20 | 34.52 | 52.31 | 16.82 | 44.79 | 15.57 | 22.13 |
| MS | 218,586 | 44.49 | 76.09 | 36.32 | 63.13 | 4.02 | 17.72 | 18.84 | 58.88 |
| GA | 724,461 | 41.01 | 79.02 | 50.51 | 48.82 | 8.70 | 38.10 | 13.09 | 39.36 |
| AZ | 448,393 | 39.59 | 80.84 | 8.68 | 89.53 | 40.31 | 35.55 | 12.45 | 11.54 |
| FL | 1,094,138 | 39.36 | 85.27 | 22.76 | 77.15 | 23.60 | 53.87 | 5.55 | 16.92 |
| MD | 343,829 | 38.47 | 86.67 | 63.79 | 36.05 | 14.31 | 55.02 | 6.26 | 24.24 |
| NV | 160,190 | 34.04 | 87.32 | 65.72 | 33.98 | 51.62 | 24.76 | 13.52 | 10.01 |
| TX | 1,508,454 | 28.45 | 93.43 | 35.34 | 64.34 | 25.54 | 34.80 | 12.47 | 26.98 |
| CA | 1,509,079 | 24.07 | 99.55 | 44.58 | 46.82 | 34.18 | 45.87 | 7.20 | 8.31 |
| NM | 80,319 | 23.68 | 99.87 | 17.66 | 78.81 | 31.69 | 12.09 | 31.45 | 22.82 |
| HI | 23,415 | 12.82 | 99.97 | 56.81 | 43.19 | 15.17 | 46.22 | 25.42 | 13.18 |
| DC | 8,447 | 10.26 | 100.00 | 68.99 | 30.96 | 99.95 | 0.00 | 0.00 | 0.00 |

# Appendix J <br> Estimated Numbers and Percentages of Students Missing From Identification as Gifted, Nationally, by State and by Racial Grouping 

## TABLE JI

Estimated Students Missing and Percent Missing in Schools That Do Not Identify Gifted Students

| Year | Students Identified with Gifts and Talents | National <br> Average Rate of Identification | Missing Students <br> Lower Boundary | \% Missing Lower Boundary | National Average Non-Title I Rate of Identification | Missing Students Upper Boundary | \% Missing Upper Boundary |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2015-16 | 3,255,232 | 0.0957 | 2,092,850 | 39.13\% | 0.1346 | 3,635,533 | 52.76\% |
| 2013-14 | 3,382,078 | 0.1019 | 2,162,284 | 39,00\% | 0.1365 | 3,546,813 | 51.19\% |
| 2011-12 | 3,190,688 | 0.0961 | 2,071,206 | 39.36\% | 0.1211 | 2,938,092 | 47.94\% |
| 2000 | 2,871,237 | 0.0874 | 1,591,196 | 35.66\% | n/a | n/a | n/a |

TABLE J2
2015-2016 Students Nationally and by State, Identified With Gifts and Talents, Rate of Identification, Missing by Lower and Upper Boundary Estimates, and Percent Missing by Lower and Upper Boundary Estimates

| State | Students <br> Identified With Gifts and Talents | State Average Rate of Identification | Missing Students Lower Boundary | Missing Students Upper Boundary | \% Missing <br> Lower <br> Boundary | State Rank by \% Missing at Lower Boundary | \% Missing <br> Upper <br> Boundary | Grade for \% Missing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| National | 3,255,232 | 0.0957 | 2,092,850 | 3,635,533 | 39.13\% |  | 52.76\% | Fail |
| AK | 6,397 | 0.0684 | 3,534 | 4,475 | 35.59\% | 24 | 41.16\% | Fail |
| AL | 51,695 | 0.0932 | 28,237 | 43,746 | 35.33\% | 23 | 45.84\% | Fail |
| AR | 46,172 | 0.1076 | 10,423 | 12,825 | 18.42\% | 4 | 21.74\% | Pass |
| AZ | 53,066 | 0.0740 | 42,230 | 28,808 | 44.31\% | 32 | 35.19\% | Fail |
| CA | 424,890 | 0.1000 | 274,119 | 401,139 | 39.22\% | 29 | 48.56\% | Fail |
| CO | 69,067 | 0.0822 | 16,859 | 22,174 | 19.62\% | 7 | 24.30\% | Pass |
| CT | 11,906 | 0.0673 | 26,033 | 35,327 | 68.62\% | 40 | 74.79\% | Fail |
| DC | 0 | 0.0957 | 7,880 | 11,083 | 100.00\% | 51 | 100.00\% | Fail |
| DE | 3,613 | 0.0784 | 8,093 | 11,716 | 69.13\% | 41 | 76.43\% | Fail |
| FL | 164,884 | 0.0675 | 50,020 | 157,125 | 23.28\% | 11 | 48.80\% | Fail |
| GA | 189,320 | 0.1121 | 56,848 | 125,737 | 23.09\% | 10 | 39.91\% | Fail |
| HI | 5,078 | 0.0436 | 3,719 | 2,870 | 42.28\% | 30 | 36.11\% | Fail |
| ID | 7,152 | 0.0463 | 7,504 | 9,249 | 51.20\% | 36 | 56.39\% | Fail |
| IL | 68,929 | 0.1320 | 206,715 | 247,567 | 74.99\% | 44 | 78.22\% | Fail |
| IN | 126,906 | 0.1454 | 37,645 | 94,544 | 22.88\% | 9 | 42.69\% | Fail |
| KS | 12,643 | 0.0302 | 4,145 | 7,940 | 24.69\% | 14 | 38.57\% | Fail |
| KY | 94,851 | 0.1483 | 16,129 | 33,045 | 14.53\% | 1 | 25.84\% | Pass |
| LA | 44,078 | 0.0936 | 7,511 | 15,578 | 14.56\% | 2 | 26.11\% | Pass |
| LA | 29,600 | 0.0473 | 10,108 | 42,364 | 25.46\% | 16 | 58.87\% | Fail |
| MA | 6,739 | 0.0957 | 87,405 | 122,933 | 95.84\% | 48 | 96.31\% | Fail |
| MD | 151,245 | 0.2437 | 91,225 | 125,981 | 37.62\% | 27 | 45.44\% | Fail |
| ME | 9,528 | 0.0674 | 2,816 | 4,058 | 22.81\% | 8 | 29.87\% | Fail |
| MI | 19,641 | 0.1247 | 174,273 | 230,105 | 89.87\% | 46 | 92.14\% | Fail |
| MN | 69,691 | 0.1476 | 67,131 | 71,114 | 49.06\% | 33 | 50.51\% | Fail |
| M0 | 36,532 | 0.0558 | 19,281 | 33,895 | 34.55\% | 22 | 48.13\% | Fail |
| MS | 33,207 | 0.0944 | 20,065 | 29,160 | 37.67\% | 28 | 46.76\% | Fail |
| MT | 4,945 | 0.0640 | 4,836 | 4,666 | 49.44\% | 34 | 48.55\% | Fail |
| NC | 170,771 | 0.1185 | 56,739 | 133,773 | 24.94\% | 15 | 43.93\% | Fail |
| ND | 2,861 | 0.0876 | 7,062 | 8,264 | 71.17\% | 42 | 74.28\% | Fail |
| NE | 35,778 | 0.1357 | 12,271 | 19,419 | 25.54\% | 17 | 35.18\% | Fail |


| State | Students Identified With Gifts and Talents | State Average Rate of Identification | Missing Students Lower Boundary | Missing Students Upper Boundary | \% Missing <br> Lower <br> Boundary | State Rank by \% Missing at Lower Boundary | \% Missing Upper Boundary | Grade for \% Missing |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| NH | 2,014 | 0.1194 | 19,857 | 20,266 | 90.79\% | 47 | 90.96\% | Fail |
| NJ | 80,037 | 0.1150 | 87,181 | 93,338 | 52.14\% | 38 | 53.84\% | Fail |
| NM | 16,239 | 0.0555 | 6,211 | 23,801 | 27.67\% | 21 | 59.44\% | Fail |
| NV | 24,566 | 0.0578 | 7,648 | 10,903 | 23.74\% | 12 | 30.74\% | Fail |
| NY | 43,802 | 0.1411 | 344,888 | 260,680 | 88.73\% | 45 | 85.61\% | Fail |
| OH | 109,491 | 0.0909 | 64,482 | 121,293 | 37.06\% | 26 | 52.56\% | Fail |
| OK | 96,726 | 0.1504 | 19,449 | 60,725 | 16.74\% | 3 | 38.57\% | Pass |
| OR | 33,111 | 0.0705 | 12,534 | 21,475 | 27.46\% | 20 | 39.34\% | Fail |
| PA | 60,033 | 0.0431 | 21,201 | 45,156 | 26.10\% | 18 | 42.93\% | Fail |
| RI | 148 | 0.0957 | 13,402 | 18,902 | 98.91\% | 50 | 97.50\% | Fail |
| SC | 118,013 | 0.1709 | 37,592 | 58,054 | 24.16\% | 13 | 32.97\% | Fail |
| SD | 2,683 | 0.0677 | 7,084 | 9,321 | 72.53\% | 43 | 77.65\% | Fail |
| TN | 15,229 | 0.0282 | 15,407 | 41,583 | 50.29\% | 35 | 73.19\% | Fail |
| TX | 404,721 | 0.0819 | 95,324 | 252,170 | 19.06\% | 5 | 38.39\% | Pass |
| UT | 31,031 | 0.1268 | 54,992 | 67,504 | 63.93\% | 39 | 68.51\% | Fail |
| VA | 160,544 | 0.1342 | 38,834 | 53,245 | 19.48\% | 6 | 24.91\% | Pass |
| VT | 121 | 0.0957 | 7,821 | 11,042 | 97.63\% | 49 | 80.60\% | Fail |
| WA | 51,306 | 0.0649 | 28,948 | 30,958 | 36.07\% | 25 | 37.63\% | Fail |
| WI | 45,219 | 0.0855 | 33,773 | 37,886 | 42.75\% | 31 | 45.59\% | Fail |
| WV | 5,337 | 0.0257 | 2,020 | 3,504 | 27.45\% | 19 | 39.63\% | Fail |
| WY | 3,676 | 0.0776 | 3,999 | 4,409 | 52.10\% | 37 | 54.53\% | Fail |

Note. Because District of Columbia does not identify students with gifts and talents and Massachusetts, Rhode Island, and Vermont identify less than $5 \%$ of their students, the National rates were used. Lower Boundary estimate is based on the National average ID of 9.57. Upper Boundary estimate is based on Nation Non-Title I rate of 13.46.

## TABLE J3

2015-2016 American Indian and Alaska Native Students, Nationally and by State, Identified With Gifts and Talents and Missing by Lower and Upper Boundary Estimates and Percent Missing Estimates at Upper and Lower Boundaries

| State | AIAN Students Identified with Gifts and Talents | Missing AIAN Students Lower Boundary | Missing AIAN Students Upper Boundary | \% Missing AIAN <br> Lower Boundary | \% Missing AIAN Upper Boundary |
| :---: | :---: | :---: | :---: | :---: | :---: |
| National | 25,954 | 24,290 | 44,663 | 48.34\% | 63.25\% |
| AK | 241 | 1,873 | 2,230 | 88.60\% | 90.25\% |
| AL | 803 | 141 | 272 | 14.96\% | 25.32\% |
| AR | 203 | 136 | 173 | 40.12\% | 46.01\% |
| AZ | 941 | 3,038 | 2,161 | 76.35\% | 69.66\% |
| CA | 1,365 | 2,285 | 3,276 | 62.60\% | 70.59\% |
| CO | 244 | 287 | 377 | 54.03\% | 60.68\% |
| CT | 19 | 83 | 114 | 81.42\% | 85.70\% |
| DC | 0 | 14 | 20 | 100.00\% | 100.00\% |
| DE | 22 | 27 | 38 | 55.22\% | 63.22\% |
| FL | 374 | 233 | 659 | 38.39\% | 63.80\% |
| GA | 329 | 69 | 292 | 17.33\% | 47.01\% |
| HI | 17 | 8 | 6 | 31.44\% | 25.96\% |
| IA | 79 | 100 | 148 | 55.94\% | 65.24\% |
| ID | 48 | 150 | 188 | 75.77\% | 79.68\% |
| IL | 120 | 646 | 779 | 84.33\% | 86.65\% |
| IN | 188 | 137 | 291 | 42.15\% | 60.73\% |
| KS | 81 | 77 | 134 | 48.75\% | 62.39\% |
| KY | 85 | 39 | 70 | 31.29\% | 45.01\% |
| LA | 138 | 99 | 357 | 41.68\% | 72.14\% |
| MA | 15 | 205 | 289 | 93.20\% | 95.07\% |
| MD | 239 | 367 | 510 | 60.56\% | 68.09\% |
| ME | 27 | 55 | 66 | 67.24\% | 71.00\% |
| MI | 91 | 1,281 | 1,683 | 93.37\% | 94.87\% |
| MN | 418 | 1,891 | 2,006 | 81.90\% | 82.75\% |
| MO | 113 | 95 | 166 | 45.69\% | 59.53\% |
| MS | 48 | 66 | 99 | 57.86\% | 67.44\% |
| MT | 179 | 953 | 916 | 84.18\% | 83.65\% |
| NC | 1,264 | 1,261 | 2,901 | 49.94\% | 69.65\% |
| ND | 370 | 579 | 671 | 61.03\% | 64.47\% |
| NE | 154 | 453 | 623 | 74.62\% | 80.18\% |
| NH | 1 | 61 | 62 | 98.39\% | 98.42\% |
| NJ | 70 | 134 | 145 | 65.68\% | 67.47\% |
| NM | 1,015 | 928 | 3,109 | 47.77\% | 75.39\% |
| NV | 113 | 153 | 205 | 57.45\% | 64.47\% |
| NY | 222 | 2,232 | 1,665 | 90.95\% | 88.23\% |
| OH | 88 | 116 | 206 | 56.89\% | 70.03\% |
| OK | 13,638 | 1,548 | 9,143 | 10.19\% | 40.13\% |
| OR | 176 | 409 | 587 | 69.90\% | 76.94\% |
| PA | 51 | 68 | 113 | 57.09\% | 68.98\% |
| RI | 1 | 94 | 132 | 98.94\% | 99.25\% |
| SC | 248 | 191 | 324 | 43.50\% | 56.65\% |
| SD | 56 | 983 | 1,287 | 94.61\% | 95.83\% |
| TN | 20 | 30 | 80 | 59.79\% | 79.95\% |
| TX | 1,053 | 539 | 1,300 | 33.85\% | 55.25\% |
| UT | 177 | 732 | 879 | 80.53\% | 83.23\% |
| VA | 324 | 172 | 267 | 34.71\% | 45.16\% |
| VT | 0 | 41 | 58 | 100.00\% | 100.00\% |
| WA | 244 | 677 | 729 | 73.51\% | 74.92\% |
| WI | 176 | 715 | 803 | 80.24\% | 82.02\% |
| WV | 4 | 3 | 5 | 45.13\% | 54.99\% |
| WY | 62 | 225 | 248 | 78.40\% | 80.01\% |

Note. Because District of Columbia does not identify students with gifts and talents and Massachusetts, Rhode Island, and Vermont identify less than $5 \%$ of their students, the National rates were used. Lower Boundary estimate is based on the National average ID of 9.57 . Upper Boundary estimate is based on Nation Non-Title I rate of 13.46.

## TABLE J4

2015-2016 Asian Students, Nationally and by State, Identified With Gifts and Talents and Missing by Lower and Upper Boundary Estimates and Percent Missing Estimates at Upper and Lower Boundaries

| State | Asian Students Identified With Gifts and Talents | Missing Asian Students Lower Boundary | Missing Asian Students Upper Boundary | \% Missing Asian <br> Lower Boundary | \% Missing Asian Upper Boundary |
| :---: | :---: | :---: | :---: | :---: | :---: |
| National | 322,114 | 81,354 | 114,341 | 20.16\% | 26.20\% |
| AK | 460 | 79 | 166 | 14.62\% | 26.55\% |
| AL | 1,091 | 445 | 610 | 28.99\% | 35.86\% |
| AR | 1,065 | 114 | 126 | 9.67\% | 10.58\% |
| AZ | 2,881 | 1,105 | 861 | 27.72\% | 23.02\% |
| CA | 91,772 | 21,891 | 27,836 | 19.26\% | 23.27\% |
| CO | 3,541 | 85 | 100 | 2.35\% | 2.74\% |
| CT | 1,254 | 1,122 | 1,458 | 47.23\% | 53.76\% |
| DC | 0 | 116 | 163 | 100.00\% | 100.00\% |
| DE | 343 | 243 | 339 | 41.47\% | 49.70\% |
| FL | 10,142 | 520 | 885 | 4.87\% | 8.02\% |
| GA | 17,622 | 85 | 132 | 0.48\% | 0.74\% |
| HI | 2,122 | 734 | 612 | 25.71\% | 22.40\% |
| IA | 1,504 | 65 | 83 | 4.16\% | 5.21\% |
| ID | 194 | 82 | 98 | 29.78\% | 33.58\% |
| IL | 9,001 | 7,120 | 8,358 | 44.17\% | 48.15\% |
| IN | 4,577 | 317 | 467 | 6.48\% | 9.26\% |
| KS | 876 | 43 | 59 | 4.72\% | 6.32\% |
| KY | 2,169 | 227 | 284 | 9.48\% | 11.57\% |
| LA | 1,545 | 32 | 67 | 2.04\% | 4.17\% |
| MA | 729 | 5,514 | 7,756 | 88.32\% | 91.41\% |
| MD | 22,199 | 1,819 | 2,248 | 7.57\% | 9.19\% |
| ME | 240 | 28 | 32 | 10.41\% | 11.61\% |
| MI | 1,432 | 5,483 | 7,091 | 79.29\% | 83.20\% |
| MN | 9,489 | 2,409 | 2,528 | 20.24\% | 21.04\% |
| M0 | 1,977 | 196 | 264 | 9.04\% | 11.77\% |
| MS | 615 | 161 | 209 | 20.78\% | 25.34\% |
| MT | 67 | 23 | 23 | 25.79\% | 25.16\% |
| NC | 9,826 | 388 | 640 | 3.80\% | 6.11\% |
| ND | 108 | 82 | 94 | 43.16\% | 46.57\% |
| NE | 1,436 | 63 | 81 | 4.20\% | 5.32\% |
| NH | 118 | 637 | 649 | 84.37\% | 84.61\% |
| NJ | 16,927 | 6,028 | 6,360 | 26.26\% | 27.31\% |
| NM | 537 | 15 | 33 | 2.80\% | 5.76\% |
| NV | 2,248 | 87 | 105 | 3.74\% | 4.44\% |
| NY | 8,657 | 28,844 | 21,932 | 76.92\% | 71.70\% |
| OH | 4,979 | 725 | 1,043 | 12.72\% | 17.32\% |
| OK | 3,392 | 89 | 134 | 2.56\% | 3.79\% |
| OR | 3,804 | 117 | 153 | 2.99\% | 3.87\% |
| PA | 5,295 | 663 | 917 | 11.13\% | 14.76\% |
| RI | 1 | 426 | 600 | 99.77\% | 99.83\% |
| SC | 3,248 | 152 | 198 | 4.47\% | 5.75\% |
| SD | 104 | 92 | 119 | 46.87\% | 53.28\% |
| TN | 1,003 | 172 | 345 | 14.63\% | 25.59\% |
| TX | 39,937 | 708 | 1,047 | 1.74\% | 2.55\% |
| UT | 1,503 | 687 | 798 | 31.37\% | 34.67\% |
| VA | 19,919 | 1,499 | 1,785 | 7.00\% | 8.22\% |
| VT | 7 | 176 | 247 | 96.17\% | 97.25\% |
| WA | 7,564 | 1,536 | 1,622 | 16.88\% | 17.66\% |
| WI | 2,378 | 800 | 879 | 25.16\% | 26.98\% |
| WV | 169 | 8 | 10 | 4.76\% | 5.74\% |
| WY | 47 | 32 | 35 | 40.67\% | 42.91\% |

Note. Because District of Columbia does not identify students with gifts and talents and Massachusetts, Rhode Island, and Vermont identify less than $5 \%$ of their students, the National rates were used. Lower Boundary estimate is based on the National average ID of 9.57. Upper Boundary estimate is based on Nation Non-Title I rate of 13.46.

## TABLE J5

2015-2016 Black Students, Nationally and by State, Identified With Gifts and Talents and Missing by Lower and Upper Boundary Estimates and Percent Missing Estimates at Upper and Lower Boundaries

| State | Black Students Identified With Gifts and Talents | Missing Black Students Lower Boundary | Missing Black Students Upper Boundary | \% Missing Black <br> Lower Boundary | \% Missing Black Upper Boundary |
| :---: | :---: | :---: | :---: | :---: | :---: |
| National | 276,840 | 469,213 | 771,728 | 62.89\% | 73.60\% |
| AK | 144 | 140 | 188 | 49.32\% | 56.63\% |
| AL | 8,320 | 14,917 | 23,506 | 64.19\% | 73.86\% |
| AR | 7,553 | 3,025 | 4,160 | 28.60\% | 35.52\% |
| AZ | 1,276 | 3,176 | 2,195 | 71.34\% | 63.24\% |
| CA | 14,676 | 21,797 | 31,704 | 59.76\% | 68.36\% |
| CO | 1,617 | 1,804 | 2,384 | 52.74\% | 59.58\% |
| CT | 865 | 3,766 | 5,153 | 81.32\% | 85.63\% |
| DC | 0 | 5,564 | 7,826 | 100.00\% | 100.00\% |
| DE | 688 | 2,711 | 4,052 | 79.76\% | 85.48\% |
| FL | 15,264 | 27,075 | 56,798 | 63.95\% | 78.82\% |
| GA | 34,285 | 38,969 | 80,004 | 53.20\% | 70.00\% |
| HI | 55 | 99 | 73 | 64.24\% | 57.12\% |
| IA | 849 | 1,821 | 2,535 | 68.20\% | 74.91\% |
| ID | 33 | 113 | 141 | 77.36\% | 81.01\% |
| IL | 6,121 | 40,197 | 48,248 | 86.78\% | 88.74\% |
| IN | 6,221 | 12,157 | 20,853 | 66.15\% | 77.02\% |
| KS | 294 | 772 | 1,159 | 72.42\% | 79.76\% |
| KY | 3,632 | 7,173 | 9,870 | 66.39\% | 73.10\% |
| LA | 7,017 | 8,036 | 24,490 | 53.39\% | 77.73\% |
| MA | 1,008 | 7,453 | 10,482 | 88.09\% | 91.23\% |
| MD | 33,865 | 41,830 | 59,695 | 55.26\% | 63.80\% |
| ME | 147 | 262 | 315 | 64.02\% | 68.15\% |
| MI | 2,141 | 32,587 | 42,772 | 93.83\% | 95.23\% |
| MN | 5,713 | 7,880 | 8,556 | 57.97\% | 59.96\% |
| M0 | 2,774 | 5,512 | 8,345 | 66.52\% | 75.05\% |
| MS | 9,592 | 13,464 | 20,246 | 58.40\% | 67.85\% |
| MT | 24 | 63 | 61 | 72.55\% | 71.62\% |
| NC | 17,376 | 29,973 | 60,727 | 63.30\% | 77.75\% |
| ND | 67 | 387 | 454 | 85.24\% | 87.15\% |
| NE | 1,323 | 1,650 | 2,484 | 55.49\% | 65.25\% |
| NH | 12 | 407 | 415 | 97.14\% | 97.19\% |
| NJ | 6,263 | 18,777 | 20,158 | 74.99\% | 76.29\% |
| NM | 225 | 147 | 565 | 39.57\% | 71.53\% |
| NV | 1,050 | 1,796 | 2,358 | 63.11\% | 69.19\% |
| NY | 4,815 | 62,953 | 47,458 | 92.89\% | 90.79\% |
| OH | 4,348 | 21,268 | 32,496 | 83.03\% | 88.20\% |
| OK | 4,762 | 4,556 | 9,216 | 48.89\% | 65.93\% |
| OR | 354 | 600 | 891 | 62.90\% | 71.57\% |
| PA | 2,014 | 9,005 | 13,226 | 81.72\% | 86.78\% |
| RI | 0 | 1,138 | 1,600 | 100.00\% | 100.00\% |
| SC | 20,160 | 25,055 | 38,766 | 55.41\% | 65.79\% |
| SD | 31 | 235 | 313 | 88.35\% | 90.99\% |
| TN | 1,305 | 5,056 | 11,453 | 79.48\% | 89.77\% |
| TX | 25,881 | 28,542 | 54,571 | 52.44\% | 67.83\% |
| UT | 487 | 680 | 868 | 58.28\% | 64.06\% |
| VA | 18,417 | 21,12 | 28,645 | 53.41\% | 60.87\% |
| VT | 2 | 190 | 267 | 98.96\% | 99.26\% |
| WA | 885 | 2,278 | 2,456 | 72.02\% | 73.51\% |
| WI | 2,753 | 4,254 | 4,948 | 60.71\% | 64.25\% |
| WV | 115 | 202 | 272 | 63.75\% | 70.26\% |
| WY | 21 | 63 | 71 | 74.98\% | 77.18\% |

Note. Because District of Columbia does not identify students with gifts and talents and Massachusetts, Rhode Island, and Vermont identify less than $5 \%$ of their students, the National rates were used. Lower Boundary estimate is based on the National average ID of 9.57 . Upper Boundary estimate is based on Nation Non-Title I rate of 13.46.

TABLE J6
2015-2016 Latinx Students, Nationally and by State, Identified With Gifts and Talents and Missing by Lower and Upper Boundary Estimates and Percent Missing Estimates at Upper and Lower Boundaries

| State | Latinx Students Identified With Gifts and Talents | Missing Latinx Students Lower Boundary | Missing Latinx Students Upper Boundary | \% Missing Latinx Lower Boundary | \% Missing Latinx Upper Boundary |
| :---: | :---: | :---: | :---: | :---: | :---: |
| National | 588,891 | 658,544 | 1,164,363 | 52.79\% | 66.41\% |
| AK | 351 | 251 | 352 | 41.68\% | 50.09\% |
| AL | 1,869 | 2,811 | 4,541 | 60.06\% | 70.84\% |
| AR | 3,229 | 3,186 | 3,874 | 49.66\% | 54.54\% |
| AZ | 16,294 | 21,028 | 12,799 | 56.34\% | 43.99\% |
| CA | 175,187 | 162,996 | 254,853 | 48.20\% | 59.26\% |
| CO | 12,553 | 12,134 | 16,315 | 49.15\% | 56.52\% |
| CT | 1,332 | 6,964 | 9,448 | 83.94\% | 87.64\% |
| DC | 0 | 1,217 | 1,712 | 100.00\% | 100.00\% |
| DE | 312 | 1,418 | 2,101 | 81.97\% | 87.07\% |
| FL | 46,396 | 12,922 | 54,566 | 21.78\% | 54.05\% |
| GA | 13,694 | 15,074 | 31,188 | 52.40\% | 69.49\% |
| HI | 311 | 648 | 489 | 67.57\% | 61.12\% |
| IA | 2,012 | 2,790 | 4,074 | 58.10\% | 66.94\% |
| ID | 448 | 1,908 | 2,360 | 80.98\% | 84.04\% |
| IL | 10,475 | 57,769 | 69,631 | 84.65\% | 86.92\% |
| IN | 7,975 | 8,618 | 16,468 | 51.94\% | 67.37\% |
| KS | 863 | 1,939 | 2,955 | 69.20\% | 77.40\% |
| KY | 2,418 | 3,670 | 5,190 | 60.28\% | 68.22\% |
| LA | 1,334 | 684 | 2,890 | 33.90\% | 68.42\% |
| MA | 1,250 | 15,583 | 21,917 | 92.57\% | 94.60\% |
| MD | 19,672 | 14,766 | 22,894 | 42.88\% | 53.78\% |
| ME | 106 | 129 | 159 | 54.82\% | 60.01\% |
| MI | 591 | 13,312 | 17,390 | 95.75\% | 96.71\% |
| MN | 4,401 | 6,916 | 7,479 | 61.11\% | 62.95\% |
| M0 | 1,219 | 1,810 | 2,845 | 59.75\% | 70.01\% |
| MS | 994 | 722 | 1,226 | 42.07\% | 55.23\% |
| MT | 89 | 293 | 281 | 76.72\% | 75.94\% |
| NC | 12,390 | 17,526 | 36,957 | 58.58\% | 74.89\% |
| ND | 47 | 365 | 426 | 88.59\% | 90.06\% |
| NE | 3,354 | 4,400 | 6,577 | 56.75\% | 66.23\% |
| NH | 38 | 1,134 | 1,157 | 96.76\% | 96.82\% |
| NJ | 10,843 | 29,270 | 31,481 | 72.97\% | 74.38\% |
| NM | 7,056 | 4,435 | 17,333 | 38.60\% | 71.07\% |
| NV | 7,397 | 3,933 | 6,169 | 34.71\% | 45.47\% |
| NY | 4,651 | 94,583 | 70,802 | 95.31\% | 93.84\% |
| OH | 2,243 | 5,806 | 9,334 | 72.13\% | 80.63\% |
| OK | 9,247 | 7,337 | 15,631 | 44.24\% | 62.83\% |
| OR | 2,759 | 6,332 | 9,105 | 69.65\% | 76.74\% |
| PA | 1,957 | 5,759 | 8,715 | 74.64\% | 81.66\% |
| RI | 3 | 3,254 | 4,577 | 99.91\% | 99.93\% |
| SC | 5,608 | 5,366 | 8,693 | 48.90\% | 60.79\% |
| SD | 38 | 432 | 570 | 91.92\% | 93.75\% |
| TN | 527 | 2,005 | 4,551 | 79.18\% | 89.62\% |
| TX | 168,406 | 58,892 | 167,604 | 25.91\% | 49.88\% |
| UT | 4,310 | 9,344 | 11,542 | 68.43\% | 72.81\% |
| VA | 14,241 | 10,570 | 15,298 | 42.60\% | 51.79\% |
| VT | 0 | 132 | 186 | 100.00\% | 100.00\% |
| WA | 4,586 | 11,484 | 12,388 | 71.46\% | 72.98\% |
| WI | 3,608 | 4,806 | 5,640 | 57.12\% | 60.99\% |
| WV | 35 | 76 | 100 | 68.43\% | 74.10\% |
| WY | 172 | 819 | 915 | 82.65\% | 84.18\% |

Note. Because District of Columbia does not identify students with gifts and talents and Massachusetts, Rhode Island, and Vermont identify less than $5 \%$ of their students, the National rates were used. Lower Boundary estimate is based on the National average ID of 9.57. Upper Boundary estimate is based on Nation Non-Title I rate of 13.46.

TABLE J7
2015-2016 Native Hawiian/Pacific Islander Students, Nationally and by State, Identified With Gifts and Talents and Missing by Lower and Upper Boundary Estimates and Percent Missing Estimates at Upper and Lower Boundaries

| State | NHPI Students Identified With Gifts and Talents | Missing NHPI Students Lower Boundary | Missing NHPI Students Upper Boundary | \% Missing NHPI <br> Lower Boundary | \% Missing NHPI Upper Boundary |
| :---: | :---: | :---: | :---: | :---: | :---: |
| National | 7,459 | 11,182 | 18,741 | 59.99\% | 71.53\% |
| AK | 98 | 148 | 190 | 60.19\% | 65.93\% |
| AL | 28 | 47 | 75 | 62.91\% | 72.92\% |
| AR | 81 | 296 | 336 | 78.51\% | 80.58\% |
| AZ | 136 | 141 | 80 | 50.96\% | 37.09\% |
| CA | 2,291 | 1,679 | 2,757 | 42.29\% | 54.62\% |
| CO | 109 | 63 | 92 | 36.60\% | 45.78\% |
| CT | 10 | 29 | 40 | 74.10\% | 80.07\% |
| DC | 0 | 9 | 13 | 100.00\% | 100.00\% |
| DE | 5 | 31 | 45 | 86.02\% | 89.97\% |
| FL | 197 | 88 | 289 | 30.96\% | 59.44\% |
| GA | 187 | 34 | 158 | 15.35\% | 45.74\% |
| HI | 875 | 1,550 | 1,147 | 63.92\% | 56.73\% |
| IA | 33 | 70 | 98 | 68.05\% | 74.79\% |
| ID | 9 | 39 | 48 | 81.20\% | 84.23\% |
| IL | 88 | 203 | 253 | 69.72\% | 74.20\% |
| IN | 69 | 39 | 90 | 36.21\% | 56.70\% |
| KS | 11 | 20 | 31 | 64.50\% | 73.95\% |
| KY | 82 | 22 | 48 | 21.48\% | 37.16\% |
| LA | 38 | 3 | 21 | 6.62\% | 35.12\% |
| MA | 11 | 84 | 118 | 88.40\% | 91.47\% |
| MD | 123 | 187 | 261 | 60.38\% | 67.94\% |
| ME | 8 | 4 | 5 | 32.16\% | 39.95\% |
| MI | 26 | 158 | 206 | 85.90\% | 88.82\% |
| MN | 30 | 106 | 113 | 78.01\% | 79.05\% |
| MO | 43 | 85 | 129 | 66.42\% | 74.98\% |
| MS | 20 | 6 | 13 | 24.31\% | 38.49\% |
| MT | 9 | 14 | 13 | 60.36\% | 59.02\% |
| NC | 144 | 87 | 236 | 37.55\% | 62.14\% |
| ND | 7 | 24 | 29 | 77.49\% | 80.40\% |
| NE | 36 | 29 | 47 | 44.49\% | 56.66\% |
| NH | 0 | 20 | 21 | 100.00\% | 100.00\% |
| NJ | 229 | 153 | 162 | 40.13\% | 41.42\% |
| NM | 29 | 3 | 29 | 8.57\% | 49.63\% |
| NV | 283 | 94 | 168 | 24.86\% | 37.25\% |
| NY | 118 | 825 | 627 | 87.48\% | 84.16\% |
| OH | 47 | 107 | 174 | 69.44\% | 78.75\% |
| OK | 200 | 142 | 313 | 41.56\% | 61.04\% |
| OR | 99 | 191 | 280 | 65.88\% | 73.85\% |
| PA | 41 | 15 | 37 | 27.21\% | 47.37\% |
| RI | 0 | 19 | 27 | 100.00\% | 100.00\% |
| SC | 144 | 34 | 88 | 19.15\% | 37.96\% |
| SD | 0 | 8 | 11 | 100.00\% | 100.00\% |
| TN | 21 | 11 | 38 | 35.25\% | 64.23\% |
| TX | 403 | 180 | 459 | 30.88\% | 53.24\% |
| UT | 576 | 706 | 912 | 55.06\% | 61.30\% |
| VA | 237 | 32 | 83 | 11.84\% | 25.95\% |
| VT | 0 | 9 | 12 | 100.00\% | 100.00\% |
| WA | 200 | 540 | 581 | 72.96\% | 74.40\% |
| WI | 20 | 44 | 50 | 68.66\% | 71.49\% |
| WV | 7 | 1 | 1 | 10.21\% | 12.17\% |
| WY | 1 | 13 | 14 | 92.84\% | 93.47\% |

Note. Because District of Columbia does not identify students with gifts and talents and Massachusetts, Rhode Island, and Vermont identify less than $5 \%$ of their students, the National rates were used. Lower Boundary estimate is based on the National average ID of 9.57 . Upper Boundary estimate is based on Nation Non-Title I rate of 13.46.

TABLE J8
2015-2016 Two or More Races Students, Nationally and by State, Identified With Gifts and Talents and Missing by Lower and Upper Boundary Estimates and Percent Missing Estimates at Upper and Lower Boundaries

| State | TMR Students Identified with Gifts and Talents | Missing TMR Students Lower Boundary | $\begin{aligned} & \text { Missing TMR } \\ & \text { Students Upper } \\ & \text { Boundary } \end{aligned}$ | \% Missing TMR Lower Boundary | \% Missing TMR Upper Boundary |
| :---: | :---: | :---: | :---: | :---: | :---: |
| National | 120,707 | 50,137 | 114,320 | 29.35\% | 48.64\% |
| AK | 775 | 165 | 323 | 17.55\% | 29.44\% |
| AL | 705 | 421 | 837 | 37.37\% | 54.28\% |
| AR | 900 | 329 | 461 | 26.77\% | 33.87\% |
| AZ | 1,695 | 784 | 611 | 31.61\% | 26.49\% |
| CA | 17,634 | 8,188 | 10,412 | 31.71\% | 37.12\% |
| CO | 3,144 | 159 | 186 | 4.80\% | 5.57\% |
| CT | 403 | 687 | 914 | 63.02\% | 69.41\% |
| DC | 0 | 151 | 212 | 100.00\% | 100.00\% |
| DE | 85 | 226 | 348 | 72.65\% | 80.39\% |
| FL | 5,958 | 742 | 4,764 | 11.07\% | 44.43\% |
| GA | 7,149 | 263 | 3,338 | 3.54\% | 31.83\% |
| HI | 567 | 410 | 316 | 41.96\% | 35.79\% |
| IA | 1,076 | 577 | 1,020 | 34.92\% | 48.66\% |
| ID | 163 | 200 | 269 | 55.08\% | 62.31\% |
| IL | 3,062 | 5,992 | 7,096 | 66.18\% | 69.86\% |
| IN | 4,921 | 2,049 | 5,346 | 29.39\% | 52.07\% |
| KS | 585 | 147 | 413 | 20.13\% | 41.39\% |
| KY | 2,329 | 1,149 | 2,017 | 33.04\% | 46.41\% |
| LA | 645 | 72 | 803 | 10.06\% | 55.47\% |
| MA | 241 | 3,431 | 4,826 | 93.44\% | 95.24\% |
| MD | 7,698 | 2,710 | 3,855 | 26.04\% | 33.37\% |
| ME | 150 | 93 | 125 | 38.34\% | 45.42\% |
| MI | 367 | 6,072 | 7,960 | 94.30\% | 95.59\% |
| MN | 2,408 | 2,493 | 2,737 | 50.87\% | 53.20\% |
| M0 | 1,175 | 498 | 1,070 | 29.77\% | 47.66\% |
| MS | 207 | 159 | 267 | 43.44\% | 56.30\% |
| MT | 100 | 159 | 150 | 61.36\% | 60.06\% |
| NC | 6,340 | 869 | 5,552 | 12.06\% | 46.69\% |
| ND | 10 | 103 | 119 | 91.12\% | 92.26\% |
| NE | 1,112 | 375 | 792 | 25.22\% | 41.61\% |
| NH | 58 | 542 | 552 | 90.33\% | 90.50\% |
| NJ | 1,197 | 1,887 | 2,057 | 61.18\% | 63.21\% |
| NM | 482 | 17 | 171 | 3.39\% | 26.17\% |
| NV | 1,925 | 122 | 146 | 5.95\% | 7.05\% |
| NY | 1,120 | 6,691 | 5,088 | 85.66\% | 81.96\% |
| OH | 3,812 | 3,807 | 7,146 | 49.97\% | 65.21\% |
| OK | 7,056 | 1,579 | 5,897 | 18.29\% | 45.53\% |
| OR | 2,310 | 383 | 731 | 14.24\% | 24.05\% |
| PA | 1,461 | 1,096 | 2,076 | 42.87\% | 58.69\% |
| RI | 3 | 560 | 789 | 99.47\% | 99.62\% |
| SC | 3,723 | 917 | 2,324 | 19.77\% | 38.44\% |
| SD | 64 | 256 | 350 | 80.01\% | 84.54\% |
| TN | 296 | 299 | 898 | 50.26\% | 75.20\% |
| TX | 10,646 | 501 | 3,025 | 4.49\% | 22.13\% |
| UT | 460 | 1,576 | 1,904 | 77.41\% | 80.54\% |
| VA | 9,205 | 553 | 1,339 | 5.66\% | 12.70\% |
| VT | 3 | 214 | 301 | 98.62\% | 99.01\% |
| WA | 3,956 | 1,541 | 1,677 | 28.04\% | 29.78\% |
| WI | 1,183 | 1,105 | 1,331 | 48.29\% | 52.95\% |
| WV | 109 | 74 | 114 | 40.55\% | 51.22\% |
| WY | 34 | 120 | 134 | 77.86\% | 79.81\% |

Note. Because District of Columbia does not identify students with gifts and talents and Massachusetts, Rhode Island, and Vermont identify less than $5 \%$ of their students, the National rates were used. Lower Boundary estimate is based on the National average ID of 9.57. Upper Boundary estimate is based on Nation Non-Title I rate of 13.46.

TABLE J9
2015-2016 White Students, Nationally and by State, Identified With Gifts and Talents and Missing by Lower
and Upper Boundary Estimates and Percent Missing Estimates at Upper and Lower Boundaries

| State | White Students Identified With Gifts and Talents | Missing White Students Lower Boundary | Missing White Students Upper Boundary | \% Missing White <br> Lower Boundary | \% Missing White Upper Boundary |
| :---: | :---: | :---: | :---: | :---: | :---: |
| National | 1,913,267 | 798,131 | 1,407,376 | 29.44\% | 42.38\% |
| AK | 4,328 | 878 | 1,026 | 16.86\% | 19.16\% |
| AL | 38,879 | 9,455 | 13,905 | 19.56\% | 26.34\% |
| AR | 33,141 | 3,337 | 3,695 | 9.15\% | 10.03\% |
| AZ | 29,843 | 12,958 | 10,101 | 30.27\% | 25.29\% |
| CA | 121,965 | 55,284 | 70,300 | 31.19\% | 36.56\% |
| CO | 47,859 | 2,328 | 2,722 | 4.64\% | 5.38\% |
| CT | 8,023 | 13,382 | 18,200 | 62.52\% | 69.40\% |
| DC | 0 | 808 | 1,137 | 100.00\% | 100.00\% |
| DE | 2,158 | 3,437 | 4,793 | 61.43\% | 68.96\% |
| FL | 86,553 | 8,440 | 39,165 | 8.89\% | 31.15\% |
| GA | 116,054 | 2,355 | 10,625 | 1.99\% | 8.39\% |
| HI | 1,131 | 271 | 226 | 19.30\% | 16.63\% |
| IA | 38,525 | 2,088 | 7,620 | 5.14\% | 16.51\% |
| ID | 6,257 | 5,012 | 6,144 | 44.48\% | 49.55\% |
| IL | 40,062 | 94,788 | 113,203 | 70.29\% | 73.86\% |
| IN | 102,955 | 14,329 | 51,029 | 12.22\% | 33.14\% |
| KS | 9,933 | 1,146 | 3,188 | 10.34\% | 24.30\% |
| KY | 84,136 | 3,849 | 15,567 | 4.37\% | 15.61\% |
| LA | 18,883 | 1,182 | 13,735 | 5.89\% | 42.11\% |
| MA | 3,485 | 55,134 | 77,545 | 94.05\% | 95.70\% |
| MD | 67,449 | 29,546 | 36,519 | 30.46\% | 35.13\% |
| ME | 8,850 | 2,245 | 3,356 | 20.24\% | 27.49\% |
| MI | 14,993 | 115,380 | 153,003 | 88.50\% | 91.08\% |
| MN | 47,232 | 45,436 | 47,695 | 49.03\% | 50.24\% |
| M0 | 29,231 | 11,085 | 21,077 | 27.50\% | 41.90\% |
| MS | 21,731 | 5,487 | 7,100 | 20.16\% | 24.63\% |
| MT | 4,477 | 3,331 | 3,222 | 42.66\% | 41.85\% |
| NC | 123,431 | 6,636 | 26,760 | 5.10\% | 17.82\% |
| ND | 2,252 | 5,523 | 6,471 | 71.03\% | 74.18\% |
| NE | 28,363 | 5,301 | 8,815 | 15.75\% | 23.71\% |
| NH | 1,787 | 17,055 | 17,410 | 90.52\% | 90.69\% |
| NJ | 44,508 | 30,932 | 32,975 | 41.00\% | 42.56\% |
| NM | 6,895 | 665 | 2,561 | 8.80\% | 27.08\% |
| NV | 11,550 | 1,464 | 1,752 | 11.25\% | 13.17\% |
| NY | 24,219 | 148,759 | 113,109 | 86.00\% | 82.36\% |
| OH | 93,974 | 32,652 | 70,893 | 25.79\% | 43.00\% |
| OK | 58,431 | 4,197 | 20,390 | 6.70\% | 25.87\% |
| OR | 23,609 | 4,501 | 9,728 | 16.01\% | 29.18\% |
| PA | 49,214 | 4,595 | 20,073 | 8.54\% | 28.97\% |
| RI | 140 | 7,912 | 11,176 | 98.26\% | 98.76\% |
| SC | 84,882 | 5,878 | 7,660 | 6.48\% | 8.28\% |
| SD | 2,390 | 5,078 | 6,672 | 68.00\% | 73.63\% |
| TN | 12,057 | 7,834 | 24,219 | 39.38\% | 66.76\% |
| TX | 158,395 | 5,962 | 24,164 | 3.63\% | 13.24\% |
| UT | 23,518 | 41,266 | 50,601 | 63.70\% | 68.27\% |
| VA | 98,201 | 4,896 | 5,829 | 4.75\% | 5.60\% |
| VT | 109 | 7,059 | 9,973 | 98.48\% | 98.92\% |
| WA | 33,871 | 10,892 | 11,505 | 24.33\% | 25.35\% |
| WI | 35,101 | 22,050 | 24,234 | 38.58\% | 40.84\% |
| WV | 4,898 | 1,655 | 3,001 | 25.25\% | 38.00\% |
| WY | 3,339 | 2,727 | 2,991 | 44.96\% | 47.25\% |

Note. Because District of Columbia does not identify students with gifts and talents and Massachusetts, Rhode Island, and Vermont identify less than $5 \%$ of their students, the National rates were used. Lower Boundary estimate is based on the National average ID of 9.57. Upper Boundary estimate is based on Nation Non-Title I rate of 13.46.


[^0]:    Students Missing From Gifted Education Identification: 39\% at the Lower Boundary. Grade: Fail. Rank: $\mathbf{2 8}$ > Nation > 23
    Nationally $3,255,232$ students were identified as gifted in 2016. The number of missing students in schools that do not identify and in schools that underidentify ranges from $2,092,850$ to $3,635,533$, ( $39 \%$ to $53 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 276,840 Black children are identified, with 469,213 to $771,728(63 \%$ to $74 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying national report.

[^1]:    Students Missing From Gifted Education Identification: 35\%\% at the Lower Boundary. Grade: Fail. Rank: 32
    Arizona identified 53,066 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 28,808 to $42,230,(35 \%$ to $44 \%)$ with most of these missing students coming from schools that do not identify and from underserved populations. For example, 941 AIAN children are identified, with 2,161 to 3,038 ( $70 \%$ to $76 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

[^2]:    Key Findings and Recommendations
    Arizona has a mandate to identify youth with gifts and talents, yet only $63 \%$ of youth attend a school where this takes place. More Title I schools in Arizona identify students with gifts and talents, and they identify larger percentages of their students with gifts and talents than do Non-Title I schools. However, despite these circumstances, underrepresentation exists for AIAN, Black, and Latinx youth. Reform is warranted with respect to access, equity, policy, procedures, and how students are identified. AIAN youth are missing due to lack of access, and they are underrepresented in schools where identification takes place.

[^3]:    Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

    Gentry, M., Gray, A., Whiting, G. W., Maeda, Y., \& Pereira, N. (2019). Access denied/System failure: Gifted education in the United States: Laws, access, equity, and missingness across the country by locale, Title I school status, and race. Report Cards, Technical Report, and Website. Purdue University: West Lafayette, IN; Jack Kent Cooke Foundation: Lansdowne, VA.

[^4]:    Key Findings and Recommendations
    Most students (88.55\%) who attend school in Arkansas have equitable access to identification, and little disparity exists between the percentage of students identified in Title I and Non-Title I schools ( 0.90 ). Yet, AIAN students with an RI of 0.69 , Black students with an average RI of 0.82 , Latinx students with an average RI 0.58 , and NHPI with an average RI of 0.27 remain underrepresented as gifted in this state. Policy and practice reform is needed to address these issues of inequity. Because underrepresentation and missingness in Arkansas is largely not a function of access, identification procedures need to be examined.

[^5]:    Students Missing From Gifted Education Identification: 39\% at the Lower Boundary. Grade: Fail. Rank: 29
    California identified 424,890 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 274,119 to 401,139, (39\% to 49\%) with most of these missing students coming from Title I schools, schools that do not identify, and from underserved populations. For example, 14,676 Black children are identified, with 21,797 to 31,704 ( $60 \%$ to $68 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

    ## Key Findings and Recommendations

    California has steadily declined in access to identification since 2000 to its present level of $68 \%$ of students attending a school where students are identified with gifts and talents. Additional inequities exist between Title I and Non-Title I schools, with Title I schools identifying $31 \%$ fewer students. Proportionally fewer AIAN students attend schools where identification takes place than students from other racial groups, so together with Black and Latinx students they are underrepresented. Reform is needed in California regarding policy and procedures, leadership, and guidance to ensure access and equity to gifted education services for all children in California.

[^6]:    AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^7]:    Students Missing From Gifted Education Identification: 20\% at the Lower Boundary. Grade: Pass. Rank: 7
    Colorado identified 69,067 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 16,859 to $22,174,(20 \%$ to $24 \%)$ with most of these missing students coming from Title I schools and from underserved populations. For example, 12,553 Latinx children are identified, with 12,134 to 16,315 ( $49 \%$ to $57 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

[^8]:    Key Findings and Recommendations
    Colorado ranks third in access to identification nationally with more than $93 \%$ of students attending schools that identify, but at the same time has large inequity between identification rates in Title I and Non-Title I schools (0.47). Underrepresentation of AIAN, Black, and Latinx youth exists across both school types and in all locales. Because there is equity of opportunity among races attending schools that identify, other factors are at play concerning underrepresentation of these groups. Thus, these data make it clear that Colorado needs to reform policy and procedures concerning access, equity, and identification in gifted education statewide.

[^9]:    AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^10]:    Key Findings and Recommendations
    Connecticut, with a mandate for identifying students with gifts and talents, but no mandate for serving those students, has limited access to gifted programs. This is exacerbated by students attending Title I schools being identified at only $55 \%$ the rate of those attending Non-Title I schools. Connecticut is missing between 2 and 3 times more students than it identifies, and the majority of these students disproportionately come from Black and Latinx groups as well as from Title I schools. Clearly policies, procedures, and reforms are needed concerning access and equity for youth with gifts and talents in Connecticut.

[^11]:    ~ Students Missing From Gifted Education Identification: 69\% at the Lower Boundary. Grade: Fail. Rank: 41
    Delaware identified 3,613 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 8,093 to 11,716 , ( $69 \%$ to $76 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 312 Latinx children are identified, with 1,418 to 2,101 ( $82 \%$ to $87 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

[^12]:    Key Findings and Recommendations
    Although Florida mandates gifted education identification and service, more than $12 \%$ of its students attend schools where no students are identified. Further, double the percentage of students are identified in Non-Title I compared to Title I schools. And although Latinx children are better represented in Florida than they are in most other states, underrepresentation of Latinx children exists, with more students estimated missing than identified. Black youth are severely underrepresented in all settings in Florida. Taken together, these findings make it clear that Florida needs to reform its policies and procedures concerning identification and associated practices to improve access and equity in gifted education for all of its children.
    Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^13]:    Students Missing From Gifted Education Identification: 23\% at the Lower Boundary. Grade: Fail. Rank: 10
    Georgia identified 189,320 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 56,848 to 125,737 , ( $23 \%$ to $40 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 34,285 Black children are identified, with 38,969 to 80,004 ( $53 \%$ to $70 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

[^14]:    AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^15]:    Students Missing From Gifted Education Identification: 42\% at the Lower Boundary. Grade: Fail. Rank: 30
    Hawaii identified 5,078 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 2,870 to 3,719 , ( $36 \%$ to $42 \%$ ) with most of these missing students coming from schools that do not identify and from underserved populations. For example, 875 NHPI children were identified, with 1,147 to 1,550 ( $57 \%$ to $64 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

[^16]:    Students Missing from Gifted Education Identification: 51\% at the Lower Boundary. Grade: Fail. Rank: 36
    Idaho identified 7,152 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 7,504 to 9,249 , ( $51 \%$ to $56 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 448 Latinx children are identified, with 1,908 to $2,360(81 \%$ to $84 \%)$ missing. These numbers are detailed in Table 7 in
    the accompanying state report.

[^17]:    Students Missing From Gifted Education Identification: 75\% at the Lower Boundary. Grade: Fail. Rank: 44
    Illinois identified 68,929 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 206,715 to 247,567, ( $75 \%$ to $78 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 6,121 Black children were identified, with 40,197 to 48,248 ( $88 \%$ to $89 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.


    #### Abstract

    Key Findings and Recommendations With an unfunded mandate that does not require identification or services, only $25 \%$ of Illinois students have access to identification. This is a sharp decline from 2000, when almost $60 \%$ of students attended schools that identified students with gifts and talents. Additional disparity exists among Title I and Non-Title I schools that identify students with Non-Title schools identifying a larger percentage of students with gifts and talents. Black youth are less likely to attend schools that identify and more likely to attend Title I schools where they are even more underidentified than other racial groups (and Title I schools identify fewer children than do Non-Title I schools, as well). Thus, it is clear that Illinois needs reform in equity, access, and identification polices, practice, and procedures in gifted education statewide.


[^18]:    Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^19]:    Students Missing From Gifted Education Identification: 23\% at the Lower Boundary. Grade: Fail. Rank: 9
    Indiana identified 126,906 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 37,645 to 94,544 , ( $23 \%$ to $43 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 6,221 Black children are identified, with 12,157 to $20,853(66 \%$ to $77 \%)$ missing. These numbers are detailed in Table 7 in the accompanying state report.

[^20]:    Students Missing From Gifted Education Identification: 15\% at the Lower Boundary. Grade: Pass. Rank: 2
    Iowa identified 44,078 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 7,511 to 15,578 , ( $15 \%$ to $26 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 849 Black children are identified, with 1,821 to 2,535 ( $68 \%$ to $75 \%$ ) missing. These numbers are detailed in Table 7 in
    the accompanying state report.

[^21]:    Students Missing From Gifted Education Identification: 15\% at the Lower Boundary. Grade: Pass. Rank: 1
    Kentucky identified 94,851 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 16,129 to $33,045,(15 \%$ to $26 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 3,632 Black children are identified, with 7,173 to $9,870(66 \%$ to $73 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

[^22]:    Students Missing From Gifted Education Identification: 26\% at the Lower Boundary. Grade: Fail. Rank: 16
    Louisiana identified 29,600 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 10,108 to $42,364,(26 \%$ to $59 \%)$ with most of these missing students coming from Title I schools and from underserved populations. For example, 7,017 Black children are identified, with 8,036 to 24,490 ( $53 \%$ to $78 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.


    #### Abstract

    Key Findings and Recommendations Despite having a mandate for identification, only $86.70 \%$ of students attend schools that identify children, with fewer Black children attending schools that identify. Additionally, this state has severe inequity between Title I and Non-Title I schools, with Title I schools only identifying 40\% the number of students as Non-Title I schools, a contribution to underrepresentation and to missing students. Louisiana has about the same number of Black and White children in its schools, yet it identifies more than 2.5 times the number of White children as gifted. Taken together, these data make it clear that policy and practice reforms are needed in Louisiana's gifted identification, access, and equity.


[^23]:    Students Missing From Gifted Education Identification: 23\% at the Lower Boundary. Grade: Fail. Rank: 8
    Maine identified 9,528 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 2,816 to 4,058 , ( $23 \%$ to $30 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 147 Black children are identified, with 262 to 315 ( $64 \%$ to $68 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

[^24]:    Students Missing From Gifted Education Identification: 38\% at the Lower Boundary. Grade: Fail. Rank: 27
    Maryland identified 151,245 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 91,225 to $125,981,(38 \%$ to $45 \%)$ with most of these missing students coming from Title I schools and from underserved populations. For example, in 2016, 33,865 Black children were identified, with 41,830 to 59,695 (55\% to 64\%) missing. These numbers are detailed in Table 7 in the accompanying state report.


    #### Abstract

    Key Findings and Recommendations Maryland has, in general, declined in its equity and access to gifted identification, with fewer schools identifying students over time. Maryland identifies a greater percentage of students as gifted than any other state. For students who attend Non-Title I schools that identify students, 3 in 10 students are identified as gifted; whereas, if students are attending Title I schools, this number drops to fewer than 2 in 10 students. Additionally, AIAN, Black, and Latinx student are disproportionately underidentified. Taken together, these data make it clear that policy and practice reforms are needed in Maryland's gifted identification, access, and equity.


[^25]:    Students Missing From Gifted Education Identification: 90\% at the Lower Boundary. Grade: Fail. Rank: 46
    Michigan identified 19,641 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 174,273 to 230,105, ( $90 \%$ to $92 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 591 Latinx children are identified, with 13,312 to $17,390(96 \%$ to $97 \%)$ missing. These numbers are detailed in Table 7 in the accompanying state report.

[^26]:    Key Findings and Recommendations
    Ranking 47th nationally for missingness, Michigan has very few schools that actually identify students with gifts and talents, and for those that do, Black and Latinx students are less likely than other students to attend these schools. For Black students who attend schools that identify, there is proportional identification, a rare finding. With only 19,641 students identified, large numbers of students (i.e., from 174,000 to 230,000 ) are missing from gifted identification because so few schools identify, because of inequity within those schools that do, and because of inequity between Non-Title I and Title I schools. Michigan needs policy, laws, and commitment to developing the strengths and talents of its diverse populations of students. Because of the low number of schools that identify, these findings must be taken with caution.

[^27]:    Students Missing From Gifted Education Identification: 49\% at the Lower Boundary. Grade: Fail. Rank: 33
    Minnesota identified 69,691 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 67,131 to 71,114 , ( $49 \%$ to $51 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 4,401 Latinx children are identified, with 6,916 to 7,479 ( $61 \%$ to $63 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

    ## Key Findings and Recommendations

    With its mandate to identify students with gifts and talents, only slightly more than half of Minnesota's districts do so and about $50 \%$ of Minnesota's gifted youth are missing from gifted identification. Inequity exists, especially for AIAN youth, in access to schools where identification takes place, and when they attend schools in which youth are identified, they are underrepresented. Additionally, Black, Latinx, and NHPI are underrepresented and missing. Together these findings underscore the need to examine policies and practices concerning how and where AIAN youth are identified with gifts and talents in Minnesota. Additionally, with as many students in Minnesota missing from gifted identification as are identified, access and equity need attention in this state.

[^28]:    Students Missing From Gifted Education Identification: 35\% at the Lower Boundary. Grade: Fail. Rank: 22
    Missouri identified 36,532 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 19,281 to 33,895 , ( $35 \%$ to $48 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, only 2,774 Black children are identified, with 5,512 to 8,345 ( $66 \%$ to $75 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

[^29]:    Key Findings and Recommendations
    Even without a mandate, almost 71\% of Missouri's students have access to be identified with gifts and talents. However, as in many other states, they are more likely to be identified if they attend a Non-Title I school, and if they are White or Asian. Inequitable representation exists in Missouri of students who attend impoverished schools, or who come from AIAN, Black, Latinx, or NHPI families. Clearly, examination of identification practices, policies, and procedures is warranted. Twice as many Black children are missing as are identified as gifted at the lower boundary, and this increases to more than three times at the upper boundary; similar patterns exist for NHPI youth and to a lesser extent for Latinx children.

[^30]:    AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^31]:    Students Missing From Gifted Education Identification: 49\% at the Lower Boundary. Grade: Fail. Rank: 34
    Montana identified 4,945 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 4,666 to $4,836,(49 \%)$ with most of these missing students coming from schools that do not identify and from underserved populations. For example, only 179 AIAN children were identified, with 916 to $953(84 \%)$ missing. These numbers are detailed in Table 7 in the accompanying state report.


    #### Abstract

    Key Findings and Recommendations Results from Montana are encouraging concerning equity between Title I and non-Title I schools; however, equity for Latinx and AIAN youth are cause for concern. With approximately $53 \%$ of students having access to identification, only $28 \%$ of AIAN youth have access, which contributes to their severe underrepresentation among youth identified with gifts and talents. In all, Montana is missing about as many students as it identifies. Review of practices and compliance with the mandate is clearly warranted, as Montana mandates identification, but only slightly more than $52 \%$ of its schools actually identify students with gifts and talents.


[^32]:    Students Missing From Gifted Education Identification: 26\% at the Lower Boundary. Grade: Fail. Rank: 17
    Nebraska identified 35,778 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 12,271 to $19,419,(26 \%$ to $35 \%)$ with most of these missing students coming from Title I schools and from underserved populations. For example, 154 AIAN children are identified, with 453 to $623(75 \%$ to $80 \%)$ missing. These numbers are detailed in Table 7 in the accompanying state report.


    #### Abstract

    Key Findings and Recommendations Despite a mandate to identify students with gifts and talents, only 83\% of Nebraska's students attend schools in which identification takes place. Further, inequity exists between Non-Title I and Title I schools regarding percentage of students identified, with Non-Title I schools identifying more than double the percentage students identified in Title I schools. RIs by race and locale show underrepresentation of AIAN, Black, and Latinx students who are identified on average at about half thee rate that would be equitable ( $0.45,0.51,0.49$, respectively). These data make it clear that Nebraska needs to reform policy and procedures concerning access, equity, and identification in gifted education statewide.


[^33]:    Students Missing From Gifted Education Identification: 24\% at the Lower Boundary. Grade: Fail. Rank: 12
    Nevada identified 24,566 students as gifted in 2016 . Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 7,648 to 10,903 , ( $24 \%$ to $31 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 1,050 Black children are identified, with 1,796 to $2,358(63 \%$ to $69 \%)$ missing. These numbers are detailed in Table 7 in the accompanying state report.

[^34]:    Key Findings and Recommendations
    With a mandate to identify and serve students with gifts and talents, more than $90 \%$ of Nevada's youth have access to gifted identification. Comparatively, Nevada identifies fewer students than the national average, and inequity exists between Non-Title I and Title I schools regarding percentage of students identified-though this inequity has improved dramatically during the past 4 years. Further, Nevada underidentifies children from AIAN, Black, and Latinx racial groups. These data make it clear that Nevada needs to reform policy and procedures concerning equity and identification in gifted education statewide.

[^35]:    AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^36]:    Students Missing From Gifted Education Identification: 91\% at the Lower Boundary. Grade: Fail. Rank: 47
    New Hampshire identified 2,014 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 19,857 to $20,266,(91 \%)$ with most of these missing students coming from schools that do not identify, Title I schools, and from underserved populations. For example, 38 Latinx children were identified, with 1,134 to 1,157 (97\%) missing. These numbers are detailed in Table 7 in the accompanying state report.


    #### Abstract

    \section*{Key Findings and Recommendations}

    New Hampshire identifies students from so few schools that making any meaningful sense from its data is challenging. Still, among the approximately 2000 youth identified statewide, disproportionality exists for students who are AIAN, Black, and Latinx. Clearly, many youth with high potential exist in New Hampshire who will go unidentified and unserved until this state implements policies and encourages practices to equitably identify and provide access to gifted education services.


[^37]:    Key Findings and Recommendations
    Despite a mandate to identify and serve students with gifts and talents, only half of New Jersey's students have access to gifted identification; however, compared with the nation and many other states, moderate equity exists between Non-Title I and Title I schools regarding the percentage of students identified. Rls by race and locale show underrepresentation. New Jersey's largest underserved racial population is Latinx youth with an overall RI of 0.65 followed by AIAN and Black youth with overall RIs of 0.67. Black and Latinx representation is affected by their disproportional lack of access to schools that have identification of youth with gifts and talents. These data make it clear that New Jersey needs to reform policy and procedures concerning access, equity, and identification in gifted education statewide.
    Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^38]:    Students Missing From Gifted Education Identification: 25\% at the Lower Boundary. Grade: Fail. Rank: 15
    North Carolina identified 170,771 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 56,739 to $133,773,(25 \%$ to $44 \%)$ with most of these missing students coming from Title I schools and from underserved populations. For example, 17,376 Black children are identified, with 29,973 to 60,727 ( $59 \%$ to $75 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

[^39]:    AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^40]:    Students Missing From Gifted Education Identification: 37\% at the Lower Boundary. Grade: Fail. Rank: 26
    Ohio identified 109,491 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 64,482 to $121,293,(37 \%$ to $53 \%)$ with most of these missing students coming from Title I schools and from underserved populations. For example, 4,348 Black children are identified, with 21,268 to $32,496(83 \%$ to $88 \%)$ missing. These numbers are detailed in Table 7 in the accompanying state report.

    ## Key Findings and Recommendations

    Even with a mandate to identify and serve gifted students, only $69 \%$ of Ohio's students have access to be identified. Further, disparity exists between Non-Title I and Title I identification rates, with Non-Title I schools identifying $40 \%$ more students than Title I schools. Add to that underrepresentation among all Brown and Black youth, and Black youth being less likely to attend schools where identification occurs, and Ohio faces serious issues of access and equity among its gifted policies and procedures. Clearly, these inequities warrant reform.

[^41]:    AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^42]:    Students Missing From Gifted Education Identification: 17\% at the Lower Boundary. Grade: Pass. Rank: 3
    Oklahoma identified 96,726 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 19,449 to $60,725,(17 \%$ to $39 \%)$ with most of these missing students coming from Title I schools and from underserved populations. For example, 9,247 Latinx children are identified, with 7,337 to 15,631 ( $44 \%$ to $63 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

[^43]:    Key Findings and Recommendations
    With mandated services, Oklahoma has consistently had access to identification for more than $90 \%$ of its students. Additionally, Oklahoma is one of the few places where there is equity in identification of AIAN youth with gifts and talents. This is noteworthy, as Oklahoma has the 2nd largest proportion of AIAN youth in relation to student enrollment and the largest by population ( $14.52 \%, 100,993$ ). Perhaps others can learn how Oklahoma has achieved equity for these students. Still Oklahoma has problems with underrepresentation of Black and Latinx youth, and inequity exists between the percentages of students identified in Title I and Non-Title I settings. Together, these data make it clear that policy work is needed in Oklahoma to ensure access and equity in gifted education to all students.

[^44]:    AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^45]:    Students Missing From Gifted Education Identification: 27\% at the Lower Boundary. Grade: Fail. Rank: 20
    Oregon identified 33,111 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 12,534 to $21,475,(27 \%$ to $39 \%)$ with most of these missing students coming from Title I schools and from underserved populations. For example, 2,759 Latinx children are identified, with 6,332 to 9,105 (70\% to $77 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

    Key Findings and Recommendations
    Oregon, with its mandate for identification and services, has moderate access for identification, with $82 \%$ of its students attending a school where identification takes place. However, the equity between Title I and Non-Title I schools is nonexistent, with Non-Title I schools identifying 3 times the percentage of their students than Title I schools. RIs for AIAN, Black, NHPI, and especially Latinx students reveal large proportional underrepresentation of these students among those identified with gifts and talents. It is interesting to note that attending a Title I school improves proportional representation for all races, but in Oregon, Title I schools only identify about one-third the percentage of Non-Title I schools. Clearly, Oregon needs to examine and reform its policies concerning equity and identification statewide.

[^46]:    AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^47]:    Key Findings and Recommendations
    Rhode Island is without policy or procedures for identifying and developing gifted and talented students in its state. As such, almost 20,000 potentially talented youth (and probably more) attending its schools have no access to gifted education services. Clearly, policy is needed to create access and equity for youth with gifts and talents in Rhode Island.

[^48]:    AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^49]:    Students Missing From Gifted Education Identification: 50\% at the Lower Boundary. Grade: Fail. Rank: 35
    Tennessee identified 15,229 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 15,407 to $41,583,(50 \%$ to $73 \%)$ with most of these missing students coming from Title I schools and from underserved populations. For example, 1,035 Black children are identified, with 5,056 to $11,453(79 \%$ to $90 \%)$ missing. These numbers are detailed in Table 7 in the accompanying state report.


    #### Abstract

    \section*{Key Findings and Recommendations}

    Tennessee has, in general, declined in its equity and access to gifted identification, with fewer schools identifying students over time, fewer students being identified, and an increased difference between Title I and Non-Title I schools in the percentages of students being identified. Additionally, equity among racial groups is worsening, and even with only a small percentage of students identified with gifts and talents on average, large numbers of Black and Latinx children are missing from gifted identification in Tennessee. Taken together, these data make it clear that policy and practice reforms are needed in Tennessee's gifted identification, access, and equity.


[^50]:    Students Missing From Gifted Education Identification: 64\% at the Lower Boundary. Grade: Fail. Rank: 39
    Utah identified 31,031 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 54,992 to $67,504,(64 \%$ to $69 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 177 AIAN children were identified, with 732 to 879 ( $81 \%$ to $83 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

    ## Key Findings and Recommendations

    Without a mandate to identify and serve students with gifts and talents, but with some funding, only one third of Utah's youth have access to gifted identification. Inequity exists between Non-Title I and Title I schools regarding percentage of students identified. Although better than many other states, Rls by race and locale still show underrepresentation of AIAN, Black, and Latinx youth. Utah needs clear policies and procedures to increase access and equity for students in gifted programs statewide.

[^51]:    AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^52]:    Key Findings and Recommendations
    Vermont is without policy or procedures for identifying and developing talented students in its state. As such, almost 11,100 potentially talented youth (and probably more) attending its schools have no access to gifted education services. Clearly, policy is needed to create access and equity for youth with gifts and talents in Vermont.

[^53]:    AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^54]:    Students Missing From Gifted Education Identification: 19\% at the Lower Boundary. Grade: Pass. Rank: 6
    Virginia identified 160,544 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 38,834 to 53,245 , ( $19 \%$ to $25 \%$ ) with most of these missing students coming from Title I schools and from underserved populations. For example, 18,417 Black children are identified, with 21,112 to 28,645 ( $53 \%$ to $61 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

    Key Findings and Recommendations
    With a mandate to identify and serve students with gifts and talents, since 2000 approximately $93 \%$ of students in Virginia attend schools that identify students with gifts and talents. However, inequity exists between Non-Title I and Title I schools regarding percentage of students identified, with Title I schools only identifying $45 \%$ of that of Non-Title I schools. RIs by race and locale show underrepresentation, especially for Black and Latinx youth. These data make it clear that Virginia needs to reform its policies, procedures, and identification practices to address issues of equity and access (in Title I schools) statewide.

[^55]:    AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^56]:    Students Missing From Gifted Education Identification: 36\% at the Lower Boundary. Grade: Fail. Rank: 25
    Washington identified 51,306 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 28,948 to 30,958, ( $36 \%$ to $38 \%$ ) with most of these missing students coming from schools that do not identify, from underserved populations, and from Title I schools. For example, 244 AIAN children were identified, with 677 to 729 ( $74 \%$ to $75 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.


    #### Abstract

    Key Findings and Recommendations Despite a mandate to identify and serve students with gifts and talents, only $72 \%$ of Washington's students have access to gifted identification. However, inequity between Non-Title I and Title I schools is small at 0.92, meaning that, unlike many other states, students in Title I schools are identified at almost the same rate as those in Non-Title I schools. Washington has low RIs for AIAN (0.41), Black (0.37), Latinx (0.37), and NHPI (0.37) youth. These data make it clear that Washington needs to reform policy and procedures concerning access, equity, and identification in gifted education statewide.


[^57]:    Students Missing From Gifted Education Identification: 27\% at the Lower Boundary. Grade: Fail. Rank: 19
    West Virginia identified 5,337 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 2,020 to $3,504,(27 \%$ to $40 \%)$ with most of these missing students coming from Title I schools and from underserved populations.
    For example, 35 Latinx children are identified, with 76 to 100 ( $68 \%$ to $74 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

[^58]:    ## Key Findings and Recommendations

    With a mandate to identify and serve youth with gifts and talents, West Virginia identifies the lowest percentage of students of all the states at 2.7\% among schools that identify. Additionally, despite having this mandate, only $75 \%$ of students attend a school where identification of students with gifts and talents takes place. In schools that identify, disproportional representation occurs between Title I and Non-Title I schools with Title I schools identifying approximately half the percentage of students as Non-Title I schools. Finally, disproportionality exists for Black and Latinx youth with overall RI at 0.49 and 0.43 , respectively. These data make it clear that West Virginia needs to reform policy and procedures concerning access, equity, and identification in gifted education statewide.
    Note. A blank indicates there are no students in that setting from this group; a zero indicated that although there are students in this setting none are identified with gifts and talents. AIAN=American Indian or Alaska Native, NHPI=Native Hawaiian or other Pacific Islander

[^59]:    Students Missing From Gifted Education Identification: 43\% at the Lower Boundary. Grade: Fail. Rank: 31
    Wisconsin identified 45,219 students as gifted in 2016. Statewide, the number of missing students in schools that do not identify and in schools that underidentify ranges from 33,773 to 37,886 , ( $43 \%$ to $46 \%$ ) with most of these missing students coming from underserved populations and from Title I schools. For example, 176 AIAN children are identified, with 715 to 803 ( $80 \%$ to $82 \%$ ) missing. These numbers are detailed in Table 7 in the accompanying state report.

