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Rapid advances in artificial intelligence (AI) and automation technologies have the potential to significantly
disrupt labor markets. While AI and automation can augment the productivity of some workers, they can replace
the work done by others and will likely transform almost all occupations at least to some degree. Rising
automation is happening in a period of growing economic inequality, raising fears of mass technological
unemployment and a renewed call for policy efforts to address the consequences of technological change. In this
paper we discuss the barriers that inhibit scientists frommeasuring the effects of AI and automation on the future
of work. These barriers include the lack of high-quality data about the nature of work (e.g., the dynamic
requirements of occupations), lack of empirically informed models of key microlevel processes (e.g., skill
substitution and human–machine complementarity), and insufficient understanding of how cognitive technologies
interact with broader economic dynamics and institutional mechanisms (e.g., urban migration and international
trade policy). Overcoming these barriers requires improvements in the longitudinal and spatial resolution of data,
as well as refinements to data on workplace skills. These improvements will enable multidisciplinary research to
quantitatively monitor and predict the complex evolution of work in tandem with technological progress. Finally,
given the fundamental uncertainty in predicting technological change, we recommend developing a decision
framework that focuses on resilience to unexpected scenarios in addition to general equilibrium behavior.

automation | employment | economic resilience | future of work

Artificial Intelligence (AI) is a rapidly advancing form of
technology with the potential to drastically reshape US
employment (1, 2). Unlike previous technologies, exam-
ples of AI have applications in a variety of highly educated,
well-paid, and predominantly urban industries (3), includ-
ing medicine (4, 5), finance (6), and information technol-
ogy (7). With AI’s potential to change the nature of work,
how can policy makers facilitate the next generation of
employment opportunities? Studying this question is
made difficult by the complexity of economic systems
and AI’s differential impact on different types of labor.

While technology generally increases productivity,
AI may diminish some of today’s valuable employ-
ment opportunities. Consequently, researchers and
policy makers worry about the future of work in both
advanced and developing economies worldwide. As
an example, China is making AI-driven technology the
centerpiece of its economic development plan (8).
Automation concerns are not new to AI, and examples
date back even to the advent of written language. In
ancient Greece (ca. 370 BC), Plato’s Phaedrus (9) de-
scribed how writing would displace human memory
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and reading would substitute true knowledge with mere data.
More commonly, historians point to the Industrial Revolution
and the riots of 19th-century Luddites (10) as examples where
technological advancement led to social unrest. Two examples
from the recent past echo these concerns.

Wassily Leontief, winner of the 1973 Nobel Prize in Economics,
noted in 1952, “Labor will become less and less important. . .
More workers will be replaced by machines. I do not see that
new industries can employ everybody who wants a job” (11).

Similarly, US Attorney General Robert F. Kennedy commented
in 1964, “Automation provides us with wondrous increases of
production and information, but does it tell us what to do with
the men the machines displace? Modern industry gives us the
capacity for unparalleled wealth—but where is our capacity to
make that wealth meaningful to the poor of every nation?” (12).

However, despite these long-lasting and oft-recurring con-
cerns, society underwent profound transformations, the economy
continued to grow, technology continues to advance, and workers
continue to have jobs. Given this history of concern, what makes
human labor resilient to automation? Is AI a fundamentally new
concern from technologies of the past?

Answering these questions requires a detailed knowledge that
connects AI to today’s workplace skills. Each specific technology
alters the demand for specific types of labor, and thus the varying
skill requirements of different job titles can obfuscate technol-
ogy’s impact. In general, depending on the nature of the job, a
worker may be augmented by technology or in competition with it
(13–15). For example, technological advancements in robotics can
diminish wages and employment opportunities for manufacturing
workers (16, 17). However, technological change does not neces-
sarily produce unemployment, and, in the case of AI, cognitive
technology may actually augment workers (18, 19). For instance,
machine learning appears to bolster the productivity of software
developers while also creating new investment and manufactur-
ing opportunities (e.g., autonomous vehicles). Complicating mat-
ters further, the skill requirements of occupations do not remain
static, but instead change with changing technology (19, 20).

In the remainder of this article, we describe how these
competing dynamics combined with insufficient data might allow
contrasting perspectives to coexist. In particular, we argue that
the limitations into data about workplace tasks and skills restricts
the viable approaches to the problem of technological change
and the future of work. We offer suggestions to improve data
collection with the goal of enriching models for workplace skills,
employment, and the impact of AI. Finally, we suggest insights
that improved data could provide in combination with a method-
ological focus on resilience and forecasting.

Contrasting Perspectives
Doomsayer’s Perspective. Technology improves to make human
labor more efficient, but large improvements may yield deleteri-
ous effects for employment. This obsoletion through labor sub-
stitution leads many to worry about “technological unemployment”
and motivates efforts to forecast AI’s impact of jobs. One study
assessed recent developments in AI to conclude that 47% of current
US employment is at high risk of computerization (23), while a con-
trasting study, using a different methodology, concluded that a less
alarming 9% of employment is at risk (24). Similar studies have
looked at the impact of automation on employment in other
countries and reached sobering conclusions: Automation will
affect 35% of employment in Finland (25), 59% of employment in
Germany (26), and 45 to 60% of employment across Europe (27).

Critics have complained that prospective studies lack validation,
but retrospective studies also find that robotics are diminishing
employment opportunities in US manufacturing (17, 28) [although
not in Germany (29)].

Optimist’s Perspective. Optimists suggest that technology may
substitute for some types of labor but that efficiency gains from
technological augmentation outweigh transition costs (30–34),
and, in many cases, technology increases employment for workers
who are in not direct competition with it (19, 35) [although recent
follow-up work suggests these are temporary gains (28)]. Fur-
thermore, the skill requirements of each job title are not static and
actually evolve over time to reflect evolving labor needs. For ex-
ample, workers may require more social skills because those skills
remain difficult to automate (20). Even if technology depresses
employment for some types of labor, it can create new needs and
new opportunities through “creative destruction” (36–38). For
instance, the replacement of equestrian travel with automobiles
spurred demand for new roadside amenities, such as motels, gas
stations, and fast food (39).

Unifying Perspectives. On one hand, multiple dynamics ac-
company technological change and create uncertainty about the
future of work. On the other hand, experts agree that occupations
are best understood as abstract bundles of skills (18, 40) and that
technology directly impacts demand for specific skills instead of
acting on whole occupations all at once (16, 19, 35, 41). Therefore,
a detailed framework that connects specific skill types to career
mobility (18, 42) and to whole urban workforces (40) may help to
unify competing perspectives (Fig. 1C). Existing studies have ar-
gued theoretically that different skill types underpin aggregate
labor trends, such as job polarization (16) and urban migration (43,
44), but robust empirical validation is made difficult by the spec-
ificity of modern skills data and their temporal sparsity.

Overcoming Barriers to Forecasting the Future of Work
In this section we identify barriers to our scientific modeling of
technological change and the future of work. Along with each
barrier, we propose a potential solution that could enable im-
provement in forecasting labor trends. We provide a summary of
these barriers and solutions in Table 1.

Barrier: Sparse Skills Data. Forecasting automation from AI re-
quires skills data that keep pace with rapidly advancing technol-
ogy [e.g., Moore’s Law (45), robots in manufacturing (17), and
patent production (46–48)]. While skill types inform the theory of
labor and technological change (1, 18, 21, 49), standard labor
data focus on aggregate statistics, such as wage and employment
numbers, and can lack resolution into the specifics that distinguish
different job titles and different types of work. For example, pre-
vious studies have empirically observed a “hollowing” of the
middle-skill jobs described by increasing employment share for
low-skill and high-skill occupations at the expense of middle-skill
occupations (16, 35) (reproduced in Fig. 1A). These studies use
skills to explain labor trends but are limited empirically to measuring
annual wages instead of skill content directly. While wages may
correlate with specific skills, wage alone fails to capture the defining
features of an occupation, andmodels focused on only cognitive and
physical labor fail to explain responses to technological change (21).

As another approach, data on educational requirements can
add resolution to employment trends (50–52). For instance, jobs
that require a bachelor’s degree may identify cognitive workers
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who are less susceptible to automation. Ideally, educational in-
stitutions train workers to possess valuable skills that lead to
higher wages (53). However, looking at education and wages
alone has proven insufficient to explain stagnating returns on
education (16, 54, 55) and slow wage growth despite increases in
national productivity (14, 15, 41) (Fig. 1B).

Improving data on the skills required to perform specific job
tasks may provide better insights than wages and education
alone. For example, previous studies have considered occupations
as routine or nonroutine and cognitive or physical (21, 56–63) or
looked at specific types of skills in relation to augmentation and
substitution from technology (18, 41). Increasing a labor model’s
specificity into workplace tasks and skills might further resolve
labor trends and improve predictions of automation from AI. As an
example, consider that civil engineers and medical doctors are
both high-wage, cognitive, nonroutine occupations requiring
many years of higher education and additional professional cer-
tification. However, these occupations require distinct workplace
skills that are largely nontransferable, and these occupations are
likely to interact with different technologies. Wages and education—
and even aggregations of workplace skills—may be too coarse
to distinguish occupations and, thus, may obfuscate the differ-
ential impact of various technologies and complicate predictions
of changing skill requirements. In turn, these shortcomings may

help explain the variability in current automation predictions
that enable contrasting perspectives.

While publicly available skills data are limited, the US De-
partment of Labor’s O*NET database has seen recent use in labor
research (e.g., refs. 23, 41, and 64). O*NET offers many benefits
including a detailed taxonomy of skills and more regular updates
than preceding datasets. In 2014, O*NET began to receive partial
updates twice annually, which is a considerable improvement on
the Dictionary of Occupational Titles, which was published in four
editions in 1939, 1949, 1965, and 1977, with a revision in 1991.
However, employment trends and changing demand for specific
tasks and skills might change faster than O*NET’s temporal res-
olution and skill categorization can capture. Complicating matters
further, advances in AI and machine learning may be changing the
nature of automation, thereby altering the types of tasks that are
affected by technology (3, 65).

Furthermore, studies often use O*NET data to construct ag-
gregations of skills, such as information input or mental processes
(40), rather than focusing on skills at their most granular level.
Methodological choices aside, O*NET’s relatively static skill tax-
onomy poses its own problems as well. For instance, according to
O*NET, the skill “installation” is equally important to both com-
puter programmers and to plumbers, but, undoubtedly, workers
in these occupations are performing very dissimilar tasks when

AA B

C

Fig. 1. Motivating and describing a framework to study technology’s impact on workplace skills. (A) Following ref. 21, we use American
Community Survey national employment statistics to compare the change in employment share (y axis) of occupations according to their average
annual wage (x axis) during two time periods. Employment share is increasing for low- and high-wage occupations at the expense of middle-wage
occupations. (B) Following ref. 15, we use data from the Federal Reserve Bank of St. Louis to compare US productivity (real output per hour) and
workers’ income (real median personal income), which have traditionally grown in tandem. The efficiency gains of automating technologies are
thought to contribute to this so-called great decoupling starting around the year 2000. (C) A framework for studying technological change,
workplace skills, and the future of work as multilayered network. (Left) Cities and rural areas represent separate labor markets, but workers and
goods can flow between them. (Middle) Each location can be represented as an employment distribution across occupations. Connections
between occupations in a labor market represent viable job transitions. Job transitions are viable if workers of one job can meet the skill
requirements of another job [i.e., “skill matching” (22)]. (Right) Workers’ varying skill sets represent bundles of workplace skills that tend to be
valuable together. Skill pairs that tend to cooccur may identify paths to career mobility. Technology alters demand for specific workplace skills,
thus altering the connections between skill pairs. As an example, machine vision software may impact the demand for human labor for some visual
task. These alterations can accumulate and diffuse throughout the entire system as aggregate labor trends described in A and B.
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they are installing things on the job (see Fig. 2A and SI Appendix,
section 1 for calculation). More generally, any static taxonomy for
workplace skills is not ideal for a changing economy: Should
mathematics and programming be two separate workplace skills
given that they are both computational? Conversely, is “pro-
gramming” too broad given the variety of existing software and
programming languages? Perhaps it is more appropriate to specify
programming tasks or specific programming languages (see Fig. 2B
for an example), especially given the rapid development of AI
and machine learning. Likely, the correct abstraction is situation-
dependent, but O*NET data offer limited flexibility.

Granular skills data will help elucidate the micro-scale impact
of AI and other technologies in labor systems. For instance, the
specifications of recent patents might suggest automatable types
of labor in the near future (46–48), thus elucidating the impact of
technological change at the granularity of workplace-specific
tasks and skills. The distribution of skill categories within occu-
pations and over individuals’ careers can reveal how occupational
skill requirements evolve. As an example, consider that occupa-
tions such as software developer dynamically change the skill
requirements in job listings (e.g., “programming” in the 1990s vs.
“Python,” “Java,” “Kubernetes,” etc. today) to reflect the tools

A B

Fig. 2. Since the skill requirements of occupations may inform opportunities for career mobility, abstract skill data may obfuscate important
labor trends. (A) We use O*NET data to identify the characteristic skill requirements for truck drivers, plumbers, and software developers
(see SI Appendix, section 1 for calculation). Individual skills may be unique to an occupation (e.g., operating vehicles) or shared between
occupations (e.g., low-light vision). The skill of installation is required by both plumbers and software developers, but this skill may not mean
the same thing to workers in these two occupations. Programming is a skill required by software developers, but the coarseness of this skill
definition may hide important dynamics brought on by new technology, including AI. (B) For example, we provide the percentage of Google
searches for coding tutorials by programming language. Trends are smoothed using locally weighted scatter plot smoothing (see SI Appendix,
section 2 for calculation). The Python programming language is widespread in the field of machine learning. Therefore, the increased ubiquity
of AI and, in particular, machine learning may contribute to Python’s steady growth in popularity.

Table 1. Tabulating the current barriers to forecasting the future of work along with proposed solutions

Barrier Potential solution

Sparse skills data

� Adaptive skill taxonomies
� Connect susceptible skills to new technology
� Improve temporal resolution of data collection
� Use data from career web platforms

Limited modeling of resilience

� Explore out-of-equilibrium dynamics
� Identify workplace skill interdependencies
� Connect skill relationships to worker mobility
� Relate worker mobility to economic resilience in cities
� Explore models of resilience from other academic domains

Places in isolation

� Labor dependencies between places (e.g., cities)
� Identify skill sets of local economies
� Identify heterogeneous impact of technology across places
� Use intercity connections to study national economic resilience

6534 | www.pnas.org/cgi/doi/10.1073/pnas.1900949116 Frank et al.
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and required specialization of the time. Understanding the dy-
namics of specific skills combined with the incomes within oc-
cupations can capture the marginal value of different skills despite
the dynamic nature of work.

Online career platforms offer an example of the empirical
possibilities facilitated by nontraditional and new data sources.
These websites collect real-time data that reflect labor dynamics
in certain industries. Data from workers’ resumes can improve our
understanding of education and careers, as well as identifying
workers’ transitions between occupations and skill sets. Addi-
tionally, job postings capture fluctuations in labor demands and
demonstrate changes in demand for specific skills. Combined,
these two sources of skills data offer an adaptive granular view
into the changing nature of work that may detail where labor
disconnects exist. Access to these private data sources is currently
restricted and typically requires a data-sharing agreement that
protects personally identifiable information and other proprietary
information. Of course, personal privacy and issues of represen-
tative sampling are inherent to these data, but increased access
could meaningfully augment currently available open data on
employment and workplace skills. One potential solution is to
construct a secure environment for the sharing of detailed skills
and career data that is similar to the recent Social Science One
partnership (69) (see https://socialscience.one).

Barrier: Limited Modeling of Resilience. Recent studies show
that historical technology-driven trends may not capture the
AI-driven trends we face today. Consequently, some have con-
cluded that AI is a fundamentally new technology (3, 65). If the
trends of the past are not predictive of the employment trends
from current or future technologies, then how can policy makers
maintain and create new employment opportunities in the face of
AI? What features of a labor market lead to generalized labor
resilience to technological change?

It is difficult to construct resilient labor markets because of the
uncertainty around technology’s impact on labor. For instance,
designing viable worker retraining programs requires detailed
knowledge of the local workforce, fluency with current technology,
and an understanding of the complex dependencies between re-
gional labor markets around the world (70, 71). Technology typically
performs specific tasks and may alter demand for specific workplace
skills as a result. These micro-scale changes to skill demand can
accumulate into systemic labor trends including occupational skill
redefinition, employment redistribution (e.g., job creation and
technological unemployment), and geographic redistribution
(e.g., worker migration). Forecasting these complex effects re-
quires a detailed understanding of the pathways along which
these dynamics occur.

As an emblematic example of these complex dynamics, consider
the competition between human bank tellers and automated teller
machines (ATMs) (described in ref. 72). Unexpectedly, national em-
ployment for bank tellers rose with the adoption of ATMs. One ex-
planation is demand elasticity: As ATMs decreased the operating
cost of bank branches, more bank branches opened nationwide to
meet rising consumer demand. Another more complicated reason is
the accompanying shift in fundamental skill requirements from
clerical ability to social and persuasive skills used by salespeople and
customer service representatives. The story of bank tellers and ATMs
is only fully captured by connecting the job-level changes in occu-
pational skill composition with the system-level dynamics of de-
mand brought on by increased efficiency. Accordingly, an updated
framework for labor and AI must capture the interactions of micro-
scopic workplace skills in combination to producemacroscopic labor
trends, such as employment shifts, job polarization, and workers’
spatial mobility (for example, see Fig. 3B).

Existing theory of the matching process between job seekers
and job vacancies (22) provides a stylized description of the
matching process that lacks resolution into skill demand. Mapping

A B

Fig. 3. Skill complementarity may define the structural resilience of a workforce and inform worker retraining programs. (A) As in climatology
and ecology, the structural pathways constraining labor dynamics could determine the resilience of a labor market to changing labor skill
demands. In this example, we connect occupation pairs with high skill similarity because skill similarity might indicate easier worker transitions
between job titles. Borrowing from research on ecological systems (66), the density of connections between occupations could determine
“tipping points” for aggregate employment in cities. (B) With recent concerns of automation (67, 68), which jobs might be suitable for paralegals
and legal assistants if employment for these jobs diminishes? Better resolution into skill requirements could help identify occupations that rely on
similar skills but also rely on skills that are removed from competition with technology. In this example, we identify characteristic skills using the
O*NET database to find that paralegals rely on many shared workplace skills with human resource specialists. Human resource specialists rely on
social skills, which are not easily automated (20). See SI Appendix, section 1 for skill calculations.
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the space of skill interdependencies (e.g., Fig. 1C) could inform
training and job assistance programs by identifying which types of
work—and which locations—may experience augmentation and/or
substitution with new technology. The detailed skill requirements of
occupations determine the career mobility of individual workers, and
thus changes to the demand for certain skills have the potential to
redefine viable career trajectories and worker flow between occu-
pations (e.g., middle layer of Fig. 1D). Therefore, mapping the re-
lationships between jobs and skills that produce employment
opportunities is a vital step for policy makers in the face of
technological change.

In related domains, tools from network science have already
provided new insights into modeling (and minimizing) systemic
risk (73) in global credit (74) and financial industries (75), fore-
casting the future exports of national economies (76–78), map-
ping worker flows between industries (79) and firms (80), and
charting the changing industrial composition of cities (81–83) and
municipalities (84). Therefore, identifying the pathways along
which labor dynamics (e.g., how skills determine workers’ career
mobility) occur may provide similarly useful insights into the im-
pact of AI on labor. Similar methods have been used to measure
ecological resilience based on the structure of mutualistic inter-
species interactions (66, 85). These methods often rely on the
size and density of interconnected entities to estimate systemic
resilience to species removal—perhaps analogous to diminishing
demand for a skill with new technology (e.g., Fig. 3A).

Mapping skill dependencies will require appropriate data-
handling methods. The ideal skills data should reflect the dynamic
nature of skill representation, and so the methods we use to de-
tect, categorize, and measure the demand for skills must be

adaptable as well. Perhaps ironically, advanced AI techniques may
help. Tools from machine learning (ML) and natural language
processing (NLP) may capture the latent structure in complex high-
dimensional data, thus making them ideal tools for the proposed
application [and other applications in econometrics (86)]. For ex-
ample, NLP may be used to process historical skills data from the
Dictionary of Occupational Titles into a format akin to the modern
O*NET data. ML can be used on longitudinal job postings data to
identify trends in skill demands that may reflect changes in tech-
nological ability. Combining thesemodern computational methods
with relevant sources of data may foster new insights into labor
dynamics at a high temporal resolution. In turn, these methodo-
logical improvements can bolster labor forecasts and policy
makers’ ability to respond to real-time labor trends.

Barrier: Places in Isolation. The impact of AI and automation will
vary greatly across geography, which has implications for the la-
bor force, urban–rural discrepancies, and changes in the income
distribution (87). The study of AI and automation are largely fo-
cused on national employment trends and national wealth dis-
parity. However, recent work demonstrates that some places (e.g.,
cities) are more susceptible to technological change than others
(17, 64). Occupations form a network of dependencies which
constrain how easily jobs can be replaced by technology (82, 88).
Therefore, the health of the aggregate labor market may depend
on the impact of technology on specific urban and rural labor
markets (73, 84).

Although technological change alters demand for specific
workplace tasks and skills, current skills data mask the specific skill
sets that comprise and differentiate the workforces of different

A

B

C
D

Fig. 4. A data pipeline that overcomes barriers to studying the future of work. (A) Inputs into the data pipeline include structured and
unstructured data that detail regional variations in labor and granular skills data in relation to technological change. (B) Data from a variety of
sources will need to be centralized and processed into a form that economists and data scientists can easily use (e.g., NLP to identify skill from
resume and job postings). (C) Cleaned data feed a model for both the intercity (e.g., worker migration) and intracity (e.g., changes to local career
mobility) labor trends brought on by technological change. (D) Outputs from this model will forecast the labor impact of technological change.
These forecasts will inform policy makers seeking to implement prudent policy and individual workers attempting to navigate their careers.
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geographies. In part, this is because skills data from nationwide
surveys, such as the O*NET database, average over the regional
variability in the required skills of workers with shared job titles.
For example, software developers seeking employment in Silicon
Valley may need to advertise more specific skill sets than similar
employees in a shallower labor market (following the division of
labor theory). Exacerbating this trend, the same AI technologies
that augment high-wage cognitive employment are more abun-
dant in large cities, while the physical low-wage tasks that are
most readily replaced by robotics are more abundant in small
cities and rural communities. This observation suggests that na-
tional wealth disparity is reflected in the wealth disparity between
large and small cities akin to wage inequality across individuals.

Improved models for spatial interdependencies require more
granular skills data (discussed above) and new insights into the
mechanisms that create today’s cross-sectional geographic trends.
For instance, how do university towns, where people gain valuable
cognitive skills, contribute to the productivity of large cities? Do
these economic connections help explain why university towns
perform surprisingly well compared with similarly sized cities
according to socioeconomic indicators [including exposure to
automation (64)]?

Furthermore, just as internal connectivity determines urban
economic resilience (83), so too can the connections between US
cities underpin the economic health of the national economy (48).
For instance, an interruption in the supply chain of well-educated
cognitive workers may stifle an urban economy that normally at-
tracts skilled workers. Therefore, it behooves policy makers to
understand the connections between their local labor market
and other urban labor markets to assess the resilience of their
local economy. Since employment opportunities are central
in people’s decision to relocate (43) and skill matching is es-
sential to the job matching process (22), understanding the
constituent skill sets in cities can inform models for the spatial
mobility of workers and improve our understanding of career mo-
bility and career incentives.

Conclusion
AI has the potential to reshape skill demands, career opportunities,
and the distribution of workers among industries and occupations in
the United States and in other developed and developing countries.
However, researchers and policy makers are underequipped to
forecast the labor trends resulting from specific cognitive tech-
nologies, such as AI. Typically, technology is designed to perform
a specific task which alters demand for specific workplace skills.
The resulting alterations to skill demands diffuse throughout
the economy, influencing occupational skill requirements, career
mobility, and societal well-being (e.g., impacts to workers’ social
identity). Identifying the specific pathways of these dynamics has
been constrained by coarse historical data and limited tools for
modeling resilience. We can overcome these obstacles, however,
by prioritizing data collection that is detailed, responsive to real-
time changes in the labor market, and respects regional variability
(see Fig. 4 for a data-pipeline schematic). Specifically, better ac-
cess to unstructured skills data from resumes and job postings
along with new indicators for recent technological change (e.g.,
patent data) and models for both intercity and intracity labor
dependencies will enable new and promising techniques for un-
derstanding and forecasting the future of work. This improved
data collection will enable the use of new data-driven tools, in-
cluding machine learning applications and systemic modeling
that more accurately reflects the complexity of labor systems. New
data will lead to new research that enriches our understanding of
the impact of technology on modern labor markets.
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