Classical Mechanics (1)

Axiom1.1 (Newtonian Formalism)

Suppose there are N particles, such that their masses, position at time ${ }^{t_{0}}$, velocity at time t_{0} are given by $m_{i},\left.\mathbf{r}_{i}\right|_{t=t_{0}},\left.\dot{\mathbf{r}}_{i}\right|_{t=t_{0}}$ for $i=1, \ldots N$ respectively. Suppose the force between them are given by $\mathbf{F}_{i j}=\mathbf{F}_{i j}\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)$ for $\forall i, j=1, \ldots, N$, such that they satisfies

$$
\left\{\begin{array}{l}
\mathbf{F}_{i j}=\mathbf{F}_{j i} \tag{1.1.1}\\
\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right) \times \mathbf{F}_{i j}=0
\end{array}\right.
$$

Then $\left\{\mathbf{r}_{i}(t)\right\}_{i=1}^{N}$ for all time t can be determined by

$$
\begin{equation*}
m_{i} \ddot{\mathbf{r}}_{i j}(t)=\sum_{\substack{j=1 \\ j \neq i}}^{N} \mathbf{F}_{i j} \tag{1.1.3}
\end{equation*}
$$

Def 1.2 (Definition of Rigid Body)

Particles $i=1, \ldots, N$ form a rigid body iff $\exists \Delta r_{i j}$ for $i=1, \ldots N ; j=1,2,3$ such that $\sum_{i=1}^{N} \Delta r_{i j}=0$ for $j=1,2,3$ and for any instance, there exist $\phi, \theta, \psi, \mathbf{R}$ such that the positions of those particles can be given by

$$
\begin{equation*}
\mathbf{r}_{i}=\mathbf{R}(t)+\Delta \mathbf{r}_{i}(t) \tag{1.2.1}
\end{equation*}
$$

where

$$
\begin{align*}
& \Delta \mathbf{r}_{i}(t)=\sum_{j=1}^{3} \Delta r_{i j} \mathbf{e}_{j}(t) \tag{1.2.2}\\
& {\left[\begin{array}{l}
\mathbf{e}_{1} \\
\mathbf{e}_{2} \\
\mathbf{e}_{3}
\end{array}\right]=\left[\begin{array}{ccc}
\cos \psi & \sin \psi & 0 \\
-\sin \psi & \cos \psi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
\cos \theta & 0 & -\sin \theta \\
0 & 1 & 0 \\
\sin \theta & 0 & \cos \theta
\end{array}\right]\left[\begin{array}{ccc}
\cos \phi & \sin \phi & 0 \\
-\sin \phi & \cos \phi & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
\mathbf{e}_{x} \\
\mathbf{e}_{y} \\
\mathbf{e}_{z}
\end{array}\right]} \tag{1.2.3}
\end{align*}
$$

The total angular momentum of $i=1, \ldots, N$ particles w.r.t. a fixed point \mathbf{r} is given by
$\mathbf{L}_{\mathbf{r}}=\sum_{i=1}^{N} m_{i}\left(\mathbf{r}_{i}(t)-\mathbf{r}\right) \times \dot{\mathbf{r}}_{i}(t)$

Thm 1.4 (Conservation of Angular Momentum)

Suppose there are $i=1, \ldots, N$ particles which are isolated from the rest of the world. Then for any fixed point \mathbf{r},
$\dot{\mathbf{L}}_{\mathrm{r}}=0$
Proof:
By application of (1.1.1) and (1.1.2). Detail refer to "Snow Mountain Book" 9-10-94

Thm 1.5

Suppose particles $i=1, \ldots, N$ formed a rigid body. Let \mathbf{r} be a fixed point. Then the relation of the total angular momentum of these N particles w.r.t. point \mathbf{r} and \mathbf{R} are related by:
$\mathbf{L}_{\mathbf{r}}=(\mathbf{R}-\mathbf{r}) \times M \dot{\mathbf{R}}+\mathbf{L}_{\mathbf{R}}$
\mathbf{R} can be referred to Def 1.2.

Thm 1.6

Suppose particles $i=1, \ldots, N$ form a rigid body. Define
$P_{i j}=\sum_{i=1}^{N} m_{i} \Delta r_{i j} \Delta r_{i k} \quad$ for $j, k=1,2,3$
Define $\left[\begin{array}{ccc}I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33}\end{array}\right]=\left[\begin{array}{ccc}P_{22}+P_{33} & -P_{21} & -P_{31} \\ -P_{12} & P_{11}+P_{33} & -P_{32} \\ -P_{13} & -P_{23} & P_{11}+P_{22}\end{array}\right]$

Define

$$
\begin{equation*}
\boldsymbol{\omega}=\frac{1}{2} \sum_{j=1}^{3} \mathbf{e}_{j} \times \dot{\mathbf{e}}_{j} \tag{1.5.5}
\end{equation*}
$$

where $\mathbf{e}_{1}, \mathbf{e}_{2}, \mathbf{e}_{3}$ can be referred to Def 1.2.

Write $\quad \boldsymbol{\omega}=\sum_{j=1}^{3} \omega_{j} \mathbf{e}_{j}$
and $\quad \mathbf{L}_{\mathbf{R}}=\sum_{j=1}^{3} L_{j} \mathbf{e}_{j}$
then $\left[\begin{array}{l}L_{1} \\ L_{2} \\ L_{3}\end{array}\right]=\left[\begin{array}{lll}I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33}\end{array}\right]\left[\begin{array}{c}\omega_{1} \\ \omega_{2} \\ \omega_{3}\end{array}\right]$

On the other hand, it can be proven that

$$
\begin{equation*}
\Delta \dot{\mathbf{r}}_{i}=\boldsymbol{\omega} \times \Delta \mathbf{r}_{i} \quad \text { for } \forall i \tag{1.5.9}
\end{equation*}
$$

where we recall here ${ }^{\Delta \mathbf{r}_{i}}$ is defined in (1.2.2).

Thm 1.7

Write $\quad \mathbf{P}=\left[\begin{array}{lll}P_{11} & P_{12} & P_{13} \\ P_{21} & P_{22} & P_{23} \\ P_{31} & P_{32} & P_{33}\end{array}\right]$
Since \mathbf{P} is self-adjoint, $\exists \mathbf{A}$, a 3×3 unitary matrix such that $\mathbf{A}^{\mathrm{T}} \mathbf{P A}$ is diagonal. Define $\mathbf{e}_{1}^{\prime}, \mathbf{e}_{2}^{\prime}, \mathbf{e}_{3}^{\prime}$ by

$$
\left[\begin{array}{l}
\mathbf{e}_{1}^{\prime} \tag{1.7.2}\\
\mathbf{e}_{2}^{\prime} \\
\mathbf{e}_{3}^{\prime}
\end{array}\right]=\mathbf{A}^{-1}\left[\begin{array}{l}
\mathbf{e}_{1} \\
\mathbf{e}_{2} \\
\mathbf{e}_{3}
\end{array}\right]
$$

$$
\mathbf{P}^{\prime}=\left[\begin{array}{lll}
P_{11}^{\prime} & P_{12}^{\prime} & P_{13}^{\prime} \tag{1.7.3}\\
P_{21}^{\prime} & P_{22}^{\prime} & P_{23}^{\prime} \\
P_{31}^{\prime} & P_{32}^{\prime} & P_{33}^{\prime}
\end{array}\right]
$$

where $P_{j k}^{\prime}=\sum_{i=1}^{N} m_{i} \Delta r_{i j}^{\prime} \Delta r_{i k}^{\prime}$
$\sum_{j=1}^{3} \Delta r_{i j}^{\prime} \mathbf{e}_{j}^{\prime}=\sum_{j=1}^{3} \Delta r_{i j} \mathbf{e}_{j}$

Then $\quad \mathbf{P}^{\prime}=\mathbf{A}^{\mathrm{T}} \mathbf{P A}$
Proof:

Since
$\Rightarrow\left[\begin{array}{lll}\Delta r_{i 1}^{\prime} & \Delta r_{i 2}^{\prime} & \Delta r_{i 3}^{\prime}\end{array}\right]=\left[\begin{array}{lll}\Delta r_{i 1} & \Delta r_{i 2} & \Delta r_{i 3}\end{array}\right] \mathbf{A}$
$\Rightarrow \sum_{i=1}^{3} m_{i}\left[\begin{array}{c}\Delta r_{i 1}^{\prime} \\ \Delta r_{i 2}^{\prime} \\ \Delta r_{i 3}^{\prime}\end{array}\right]\left[\begin{array}{lll}\Delta r_{i 1}^{\prime} & \Delta r_{i 2}^{\prime} & \Delta r_{i 3}^{\prime}\end{array}\right]=\sum_{i=1}^{3} m_{i} \mathbf{A}^{\mathrm{T}}\left[\begin{array}{c}\Delta r_{i 1} \\ \Delta r_{i 2} \\ \Delta r_{i 3}\end{array}\right]\left[\begin{array}{lll}\Delta r_{i 1} & \Delta r_{i 2} & \Delta r_{i 3}\end{array}\right] \mathbf{A}$
$\Rightarrow \mathbf{P}=\mathbf{A}^{\mathrm{T}} \mathbf{P A}$

Thm 1.8
Recall particles $\mathrm{i}=1, \ldots, \mathrm{~N}$ form a rigid body. Let for every particle i , there is a external force $\mathbf{F}_{i}^{\text {ext }}$ acting on it. Then

$$
\begin{equation*}
M \ddot{\mathbf{R}}=\sum_{i=1}^{N} \mathbf{F}_{i}^{\text {ext }} \tag{1.8.1}
\end{equation*}
$$

Write $\mathbf{I}=\left[\begin{array}{lll}I_{11} & I_{12} & I_{13} \\ I_{21} & I_{22} & I_{23} \\ I_{31} & I_{32} & I_{33}\end{array}\right]$

Suppose I can be given by $I=\left[\begin{array}{ccc}I_{11} & 0 & 0 \\ 0 & I_{22} & 0 \\ 0 & 0 & I_{33}\end{array}\right]$
Define $\boldsymbol{\Gamma}=\sum_{i=1}^{N} \Delta \mathbf{r}_{i} \times \mathbf{F}_{i}^{\text {ext }}$

Write $\boldsymbol{\Gamma}=\sum_{j=1}^{3} \Gamma_{j} \mathbf{e}_{j}$

Then we have the Euler's equation of motion:
$\left\{\begin{array}{l}I_{11} \dot{\omega}_{1}+\omega_{2} \omega_{3}\left(I_{33}-I_{22}\right)=\Gamma_{1} \\ I_{22} \dot{\omega}_{2}+\omega_{1} \omega_{3}\left(I_{11}-I_{33}\right)=\Gamma_{2} \\ I_{33} \dot{\omega}_{3}+\omega_{1} \omega_{2}\left(I_{22}-I_{11}\right)=\Gamma_{3}\end{array}\right.$

Proof: Refer to Snow Mountain Book Classcial Mechanics 27-12-94.

Def 1.9

The total kinetic energy of particles $i=1, \ldots, N$ is defined by

$$
\begin{equation*}
\text { K.E. }=\sum_{i=1}^{N} \frac{1}{2} m_{i}\left|\dot{\mathbf{r}}_{i}(t)\right|^{2} \tag{1.9.1}
\end{equation*}
$$

Thm 1.10
Suppose particles $i=1, \ldots, N$ form a rigid body. Then the total kinetic energy of these particles can be given by
$(\text { K.E. })_{\text {total }}=(\text { K.E. })_{\text {translational }}+(\text { K.E. })_{\text {rotational }}$
where

$$
\begin{equation*}
\text { (K.E.) } \text { translational }=\frac{1}{2} M|\dot{\mathbf{R}}|^{2} \tag{1.10.1}
\end{equation*}
$$

(K.E. $)_{\text {rotational }}=\frac{1}{2}\left(I_{11} \omega_{1}^{2}+I_{22} \omega_{2}^{2}+I_{33} \omega_{3}^{2}\right)+I_{12} \omega_{1} \omega_{2}+I_{13} \omega_{1} \omega_{3}+I_{23} \omega_{2} \omega_{3}$

Definition \mathbf{R}, M should be referred to Def 1.2; $\omega_{1}, \omega_{2}, \omega_{3}$ should be referred to (1.5.5); $I_{i j}$ for $i, j=1,2,3$ should be referred to (1.5.4).

Thm 1.11 (Lagrangian Formulation)

With reference to Axiom 1.1, suppose $\exists U_{i j}(r)$ for $i, j=1, \ldots, N$ such that $U_{i j}(r)=U_{j i}(r)$ for $\forall i, j$ and $\mathbf{F} i j$ can be expressed as
$\mathbf{F}_{i j}=-\frac{\partial U_{i j}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)}{\partial \mathbf{r}_{i}}$
for $\forall i, j$. Then define the total potential energy:
$V=\frac{1}{2} \sum_{\substack{i, j=1 \\ i \neq j}}^{N} U_{i j}\left(\left|\mathbf{r}_{i}-\mathbf{r}_{j}\right|\right)$

Let us write the total kinetic energy defined in Def 1.9 as T, i.e.,
$T=\sum_{i=1}^{N} \frac{1}{2} m_{i}\left|\dot{\mathbf{r}}_{i}\right|^{2}$

Suppose now there exist a set of coordinates, $q_{1}, \ldots, q_{N_{q}}$, where $N_{q} \leq 3 N$ such that the positions of those particles at any time can be expressed in terms of these coordinates, i.e. $\mathbf{r}_{i}=\mathbf{r}_{i}\left(q_{1}, \ldots, q_{N_{q}}\right)$ for $i=1, \ldots, N$. Define the Lagrangian of the system:
$L=T-V$

Suppose now these ${ }^{q_{1}, \ldots, q_{N_{q}}}$ coordinates are subjected to p constraint $\left(p \leq N_{q}\right)$, i.e. $f_{k}\left(q_{1}, \ldots, q_{p}, t\right)=0 \quad$ for $k=1, \ldots, p$

Then it can be proven that $\exists_{k}(t)$ for $k=1, \ldots, p$ such that $\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\frac{\partial L}{\partial q_{j}}+\sum_{k=1}^{p} \lambda_{k}(t) \frac{\partial f_{k}}{\partial q_{j}}=0$

$$
\begin{equation*}
\text { for } j=1, \ldots, N_{q} \tag{1.11.6}
\end{equation*}
$$

Define canonical momentum

$$
\begin{equation*}
p_{i}=\frac{\partial L}{\partial \dot{q}_{i}}, \text { for } i=1, \ldots, N \tag{1.16.1}
\end{equation*}
$$

Define Hamiltonian function
$H\left(p_{1}, \ldots, p_{N}, q_{1}, \ldots, q_{N}, t\right)=\left\{\sum_{i=1}^{N} \dot{q}_{i} p_{i}\right\}-L$
By expand $d H$ in R.H.S.:

$$
\begin{aligned}
& \begin{aligned}
d H & =\left\{\sum_{i=1}^{N} \dot{q}_{i} d p_{i}+p_{i} d \dot{q}_{i}\right\}-\left\{\sum_{i=1}^{N} \frac{\partial L}{\partial q_{i}} d q_{i}+\frac{\partial L}{\partial \dot{q}_{i}} d \dot{q}_{i}\right\}-\frac{\partial L}{\partial t} d t \\
& =\sum_{i=1}^{N}\left\{\dot{q}_{i} d p_{i}+\frac{\partial L}{\partial \dot{q}_{i}} d \dot{q}_{i}-\frac{\partial L}{\partial q_{i}} d q_{i}-\frac{\partial L}{\partial \dot{q}_{i}} d \dot{q}_{i}\right\}-\frac{\partial L}{\partial t} d t \\
& =\sum_{i=1}^{N}\left\{\dot{q}_{i} d p_{i}-\dot{p}_{i} d q_{i}\right\}-\frac{\partial L}{\partial t} d t
\end{aligned} \\
& \text { and in L.H.S.: }
\end{aligned}
$$

$d H=\sum_{i=1}^{N}\left\{\frac{\partial H}{\partial p_{i}} d p_{i}+\frac{\partial H}{\partial q_{i}} d q_{i}\right\}+\frac{\partial H}{\partial t} d t$
and compare the two side, we have

$$
\begin{equation*}
\dot{p}_{i}=-\frac{\partial H}{\partial q_{i}} \text { and } \quad \dot{q}_{i}=\frac{\partial H}{\partial p_{i}}, \quad \text { for } i=1, \ldots, N \tag{1.16.3}
\end{equation*}
$$

