
Statistical Mechanics (4) 

 

 

Def 4.1 

 

Consider a gas inside a piston. Define dQ to be the thermal energy transferred from the 

surrounding to the system.                               …….(4.1.1) 

 

Define dU, the change of internal energy of the gas to be 

 

PdVdQdU −=                                          …….(4.1.2) 

 

Define molar heat capacity of the gas at constant volume be  
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where  is the no. of mole of the gas. Define the molar heat capacity of the gas at 

constant pressure to be  
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Thm 4.2 

 

Suppose a gas in a piston obey ideal gas law (i.e. NkTRTPV ==  ) and that 
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and that  is a constant (independent of any variable), then it can be proven that if the gas 

undergo adiabatic process (i.e. dQ=0), then P, V must obey the following rule 

 

constant=PV                                  …….(4.2.1) 

 

Thm 4.3 

 

It can be verified from experiment that for all kind of gas in piston,  
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This law is called the Joule’s Law. 

 



Def 4.4 

 

If a gas is piston obey ideal gas law, it can be proven that 

 

RCC VP =−                                                 ……….(4.4.1) 

 

Def 4.5 

 

A process undergo by a gas in a piston is reversible iff 

 

I. The process is very slow such that at each time in the process, the system is in 

equilibrium (settled down) 

II. The work done by the system must equal to PdV (i.e. no energy dissipation 

due to friction, etc.) 

 

Thm 4.6 

 

Suppose function ),...,( 1 nxxff = is to be maximized under the constraint  
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Then the problem can be solved by solving the simultaneous equations: 
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which involve n+p unknown:x1,…,xn; λ1,…,λp and n+p equations. 

 

Thm 4.7 

 

If 


i

in
identical distinguishable particle is to distribute along the energies, such that the 

no. of cell with energy εi is gi and the no. of particle with energy εi is ni, then the no. of 

way is given by 
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where 
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                                            …….(4.7.2) 

 

Define the entropy    ,...),(ln,....),( 2121 nnWknnS =                           ……(4.7.3) 

 

Let 1in  for all i, then using Stirling formula ( 1for      ln!ln −= nnnnn  ), we can 

prove that  
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If S is to maximize under the constraint  
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                   ……..(4.7.5) and (4.7.6) 

 

then according to Thm 4.6, 
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               for j=1,2,…..             …….(4.7.7) 

 

which will lead to that  
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Suppose after S is maximized under the two constraint (4.7.5), (4.7.6), suddenly the total 

internal energy is changed by dU. Let the change of no. of particle with energy εi is dni. 

Since  
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, then  
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From (4.7.7), we have 
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Let the total no. of particle is not changed: 

 

dQdUdndS
k j

jj  === 
1

 (Assume no volume change) 

 

By comparing with the formula T
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Thm 4.8 

 

If 


i

in
 identical indistinguishable particles is to distribute along the energies, such that 

the no. of cell with energy εi is gi and the no. of particles with energy εi is ni, then the no. 

of way is given by                                        ……(4.8.0) 
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Let ni>>1 for all I, and use Stirling formula, we can prove that  
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If S is to maximize under the constraint
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to Thm 4.6 
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which lead to   11
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Thm 4.9 

 

Assume in a cubic box of side L, and set the periodic boundary condition to photon: 
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Then the no. of photon between ρ and ρ+dρ is 2(4πρ2)dρ              ……..(4.9.3) 

where the factor 2 comes from that photon have two direction of polarization. Substitute 

(4.9.1), (4.9.2) into (4.9.3), we have the no. of photon between ν and ν+dν (ν is 

frequency) is 
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                                              …….(4.9.4) 

and the total energy of photons between ν and ν+dν is therefore by substitution into 

(4.8.4): 
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and so energy volume density of photon between ν and ν+dν 
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                  (Planck Radiation Formula)                     ………(4.9.5) 

 

By special mathematics technique (Appendix A of “Statistical Physics”, by F. Mandl), it 

can be evaluate that  
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According to the corpuscle picture of photon, rate of energy passing through a certain 

area should be linearly related with the energy volume density, therefore, we can infer the 

wall of the box, which is a blackbody and have the same temperature with the photons 

radiates as 

 
44 TeTR =      (Stefan-Boltzmann Law)              …….(4.9.7) 

 

where R is the energy per unit area per unit time, 4

ac
=

is the Stefan constant, e is the 

emissivity. For perfect reflector, e=0, and for blackbody, e=1. 

 

Thm 4.11 

 



If 


i

in
identical indistinguishable particles is to distribute along the energies, such that 

the no. of cell with energy εi is gi and the no. of particle with energy εi is ni, and that 

every cell can only accommodate 1 particle, then the no. of way is given 

by       …..(4.11.0) 
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Let gi is large enough, such that both gi, ni and gi-ni are large enough to apply the Stirling 

formula 
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Then the entropy can be given by  
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If  S is to maximize under the constraint 
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Then according to Thm 4.6, 
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which will lead to that 
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Thm 4.12 
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So the energy volume density of photon between (λ,λ+dλ) is given by (4.12.1). To find 

the value of λ where d
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is maximum, we have 
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From (4.12.2), we have λmax, the value of λ where d
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Thm 4.13 

 

When d
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in (4.9.5) is plotted against ν, we have 

 

Figure 4.13.1 

 

Thm 4.14 

 



From formula (4.7.3), we know that ,...),( 21 nnSS = . If for every moment, S is to be 

maximized under the constraint (4.7.5) & (4.7.6), we have in (4.7.8) ),( ENnn ii = , 

where N, E is the total no. of particle and total energy respectively. Then 

),...),(),,(( 21 ENnENnSS = . Define the chemical potential 
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From (4.7.7), we have  
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Thm 4.15 

 

Suppose two variables out of four variables: T, V, S, P are independent variables. 

Suppose, there exist a U, such that U can be written as the function of any two 

independent variables out of T, V, S, P and that if we take S, V as the two independent 

variable, we will have 
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Then we can prove the “Maxwell relations”: 
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Proof: 

 

Firstly, define the function H (enthalpy), F (Helmhotz’s free energy) and G (Gibb’s free 

energy) by 

 

H=U+PV                                        ……(4.15.3) 

F=U-TS                                          ……(4.15.4) 

G=U-TS+PV                                  ……(4.15.5) 

 

Then take the total differentiation dH, dF and dG, and make use of (4.15.1), we will get 

 

dH=TdS+VdP                                     …..(4.15.6a) 

dF=-SdT-PdV                                    ……(4.15.6b) 

dG=-SdT+VdP                                   ……(4.15.6c) 

 

Let us repeat (4.15.1) here 

 

dU=TdS-PdV                                       ……(4.15.6d) 

 

Then from (4.15.6a) to (4.15.6d), we will be able to prove the Maxwell’s relations 

(4.15.2a) to (4.15.2d) easily. 

 

Thm 4.16 

 



Suppose 


i

in
identical distinguishable particle is to distribute along a series of cells, 

such that the ith cell has ni particles. Suppose a particle in the ith cell will possess a 

energy εi, then the no. of way is given by 
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Define the entropy    ,...),(ln,....),( 2121 nnWknnS =                           ……(4.16.3) 

 

Let 1in  for all i, then using Stirling formula ( 1for      ln!ln −= nnnnn  ), we can 

prove that  
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If S is to maximize under the constraint  
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then according to Thm 4.6, 

 

0
1 21 =




−




−





jjj n

g

n

g

n

S

k


               for j=1,2,…..             …….(4.16.7) 

 

which will lead to that  

 
jeeNn j

 −−= 0                           for j=1,2,…..                 ……(4.7.8) 

 

 

Thm 4.17 

 

From (4.15.4), we have F=U-TS. Let us assume every thing in Thm 4.16 still valid. Then 
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. Define the partition function 
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Thm 4.18 

 

A typical PVT system 
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Thm 4.19 

 



 
Let G1, G2 be the Gibb’s free energy at point 1 & 2 respectively. When the system moves 

along the dashes line from 1 to 2, P & T keep constant. So the change in Gibb’s energy 

from (4.15.5) is 

 

dG=dU-TdS+PdV 

     =dQ-TdS                                                           …….(4.19.0a) 

 

21 GG = . Similariy 221121 GGGGGG −=−=                 …….(4.19.0b) 

 

From (4.15.6c), 
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)()( 22222222 PPVTTSGG −+−−=−                       …….(4.19.0d) 

 

Where S1, V1, S2, V2 are entropy and volume at point 1 & 2 respectively. 
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Thm 4.20 

 

In Thm 4.19, 
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T1, then similar to the above argument, 
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Thm 4.21 

 

Consider the W given in (4.8.1). Suppose for all i, gi >> ni, then 
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Consider the W given in (4.11.1). Suppose for all i, gi >> ni, then 
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For Bose-Einstein & Fermi-Dirac System, if gi >> ni for all i ,  …..(4.21.3) we can use 

treatment similar to the Maxwell Boltzmann System as in Thm. 4.7. 

 

Thm 4.22 

 

Assume we are talking about the system described in Thm 4.16, 
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Thm 4.23 

 



Assume we are still talking about the system described in Thm 4.16. Suppose each cell is 

formed by a point in the phase space 
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Then the partition function will be given by (4.17.1) 
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From (4.22.1), 
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