Statistical Mechanics (4)

Def4.1

Consider a gas inside a piston. Define dQ to be the thermal energy transferred from the
surrounding to the system. ... (4.1.1)

Define dU, the change of internal energy of the gas to be

dU =dQ - PdVv 4.1.2)

Define molar heat capacity of the gas at constant volume be
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where #is the no. of mole of the gas. Define the molar heat capacity of the gas at
constant pressure to be
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Define Voo (4.1.5)
Thm 4.2

ouU
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Suppose a gas in a piston obey ideal gas law (i.e. PV =/RT = NI<T) and that oV '

and that 7'is a constant (independent of any variable), then it can be proven that if the gas
undergo adiabatic process (i.e. dQ=0), then P, V must obey the following rule

PV’ = constant 4.2.1)

Thm 4.3

It can be verified from experiment that for all kind of gas in piston,
ouU
=Y. =0
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This law is called the Joule’s Law.



Def4.4

If a gas is piston obey ideal gas law, it can be proven that

Co-Cy =R (4.4.1)

Def 4.5
A process undergo by a gas in a piston is reversible iff

l. The process is very slow such that at each time in the process, the system is in
equilibrium (settled down)

. The work done by the system must equal to PdV (i.e. no energy dissipation
due to friction, etc.)

Thm 4.6

Suppose function F= 1% %) is to be maximized under the constraint
gl(xl,....,xn) =0
9p(XppoX) =0 (4.6.1)

Then the problem can be solved by solving the simultaneous equations:

0
i+ﬂ’1%+...+/’{p&=0 f0rj=1,...,n
¢ OX; OX;
9,(x;,...,X,)=0
9p (KppeX)=0 (4.6.2)

which involve n+p unknown:xs, ..., xn; 41, ...,4p and n+p equations.

Thm 4.7

Iqi
If i identical distinguishable particle is to distribute along the energies, such that the

no. of cell with energy «i is gi and the no. of particle with energy &i is n;, then the no. of
way is given by



_ (N(n,,n,,...))!

W(n,n,,.)=—2 2% grg,2
ntnb-— (4.7.1)
N(n,n,,...)= > n
where Z ....... 4.7.2)
Define the entropy ~ S(MNisNp) =kINW(n,n,0) (4.7.3)

Let ™ >>1 for all i, then using Stirling formula (INn!=nlnn—n_ forn>>1 we can
prove that

S(n,,n,,...)=K[N(n,...)In N(nl,...)—Zni Inn, +Zni Ing,]

If S is to maximize under the constraint

0,01, )= (TN~ Ny =0
gz(nl,nz,...):{Zni}_ EO =0

........ (4.7.5) and (4.7.6)
then according to Thm 4.6,
1 oS _a891 _ﬂaQZ =0
kion; on; o, forj=12,... ... 4.7.7)
which will lead to that
_ —a =P
n; =Noyg;e e forj=12,.... ... (4.7.8)

Suppose after S is maximized under the two constraint (4.7.5), (4.7.6), suddenly the total
internal energy is changed by dU. Let the change of no. of particle with energy & is dni.

u(n,n,,...)= D ne

Since i , then

duU = zg—: dn, = Zeidni

.....(47.9)
From (4.7.7), we have
10S . 10S
———a-pPs =0 forj=12,..... =) (-——-a—pe&;)dn. =0
k on; o= pe, =1 Zj:(kﬁnj o= fg; an;



Let the total no. of particle is not changed:

:%ds = B3 &,dn; = AU = AdQ
i

(Assume no volume change)

Il 1
By comparing with the formula T , we have Tor
1
p==
kT (4.7.10)
Thm 4.8
n;
If i identical indistinguishable particles is to distribute along the energies, such that
the no. of cell with energy «i is gi and the no. of particles with energy & is ni, then the no.
of way is givenby ... (4.8.0)
(ni+9; -
W(n,,n,,. !
v H n;(g; 1)' e (48.1)

Let ni>>1 for all I, and use Stirling formula, we can prove that

S(n1’n2!---): kZ[(ni +0; _1) In(ni +0; _1)_ni In n; _(gi _1)_In(gi _1)!]

..(4.8.2)
) o ) gl(nl’nZ""):{znigi}_Eo =0 _
If S is to maximize under the constraint i , then according
to Thm 4.6
1 0S
E%"ﬂ
nj forj=1,2,... ... (4.8.3)
g9;-1 g;
nj = Pe; ~ pe;
which lead to e’ -1 e -1 (ifg>1) ... (4.8.4)
Thm 4.9

Assume in a cubic box of side L, and set the periodic boundary condition to photon:



2r
k= T(nleX +n,e, +ne,)

Let P~ =Ny +n;+ng (4.9.2)

Then the no. of photon between p and p+dp is 2(4mp?)dp ... (4.9.3)

where the factor 2 comes from that photon have two direction of polarization. Substitute

(4.9.1), (4.9.2) into (4.9.3), we have the no. of photon between v and v+dv (v is
2(47r(£)3v2)dv

frequency) is c

and the total energy of photons between v and v+dyv is therefore by substitution into

(4.8.4):

hv(2)47r(|;)3v2dv
hv
ekt —1

dE =

and so energy volume density of photon between v and v+dv

dE  8zhvidv
I
¢’ -1 (Planck Radiation Formula) ..., (4.9.5)

By special mathematics technique (Appendix A of “Statistical Physics”, by F. Mandl), it
can be evaluate that

21,4
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a=
Cdv (4.9.6) (1 )

According to the corpuscle picture of photon, rate of energy passing through a certain
area should be linearly related with the energy volume density, therefore, we can infer the
wall of the box, which is a blackbody and have the same temperature with the photons
radiates as

RoxcT*=eoT* (Stefan-Boltzmann Law) ... (4.9.7)

ac

o=—
where R is the energy per unit area per unit time, 4 s the Stefan constant, e is the
emissivity. For perfect reflector, e=0, and for blackbody, e=1.

Thm4.11



Ir\i
If i identical indistinguishable particles is to distribute along the energies, such that
the no. of cell with energy «; is gi and the no. of particle with energy «; is n;, and that
every cell can only accommodate 1 particle, then the no. of way is given
by ....(4.11.0)

W(nl,nz,...):H 9"

Pl -n)t (4.11.1)

Let gi is large enough, such that both gi, nj and gi-n; are large enough to apply the Stirling
formula

In 9!~ g, In g0
Inn!=n,Inn, —n,
In(gi _ni)!z (gi _ni)ln(gi _ni)_(gi _ni) _______ (4.11.2)

Then the entropy can be given by

S(nli""): kZ[gi In g —g;—n In n+n _(gi _ni)ln(gi _ni)+(gi _ni)]
)

If Sisto maximize under the constraint

(4113

gl(nl1n2""):{zni}_ N, =0

gz(nl’nzv--):{zni}— E,=0
i coveen(4.11.4) and (4.11.5)

Then according to Thm 4.6,

- _aagl_ﬂaQZZO
konj ony " on, forj=12,... ... (4.11.6)

which will lead to that

N9
Poeteer (4.11.7)

Thm4.12



Av=Cc>Dv= C//”t:>dv———d/”t

Since A2 . So from (4.9.5), we have
¢, ¢
de ¥MCD 29 gancds
L3 C3 (ehc//lkT _1) 15 (ehc//lkT _1) ....... (4121)

So the energy volume density of photon between (1,4+d2) is given by (4.12.1). To find
1 dE

the value of A where L° d4 is maximum, we have

4L
ALd (4.12.2)

1 dE
From (4.12.2), we have Amax, the value of 2 where L° d4 is maximum is given by

3
AmaxT =2.898x10 (Wien’s displacement Law) ... (4.12.3)

Thm 4.13

1dE
When LCdii in (4.9.5) is plotted against v, we have

1 dE
rdi

Figure 4.13.1

Thm4.14



From formula (4.7.3), we know that S = S(N:N2.-) |f for every moment, S is to be

maximized under the constraint (4.7.5) & (4.7.6), we have in (4.7.8) M =N (N,E)
where N, E is the total no. of particle and total energy respectively. Then

S =S(n,(N,E),n,(N,E)...)  Define the chemical potential

oS
- T(Z
A= (4.14.1)

From (4.7.7), we have

165
Z = (N,E)—a-pfs =0
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Consider the functions i oN T ON :
fz(N,E)zzm(N,E)gi:E:%:o
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Thm 4.15

Suppose two variables out of four variables: T, V, S, P are independent variables.
Suppose, there exist a U, such that U can be written as the function of any two
independent variables out of T, V, S, P and that if we take S, V as the two independent
variable, we will have

dU =TdS - PdV (4.15.1)

Then we can prove the “Maxwell relations”:



s, ,oP & v
WG s @G (4.15.2b)
v, aT ot oP

Gl = @isag TGS s

Proof:

Firstly, define the function H (enthalpy), F (Helmhotz’s free energy) and G (Gibb’s free
energy) by

H=U+PV . (4.15.3)
F=U-TS . (4.15.4)
G=U-TS+PV ... (4.15.5)

Then take the total differentiation dH, dF and dG, and make use of (4.15.1), we will get

dH=TdS+VdP ....(4.15.62)
dF=-sdT-Pdv ... (4.15.6b)
dG=-sdT+vdP ... (4.15.6¢)

Let us repeat (4.15.1) here
du=Tds-pav.. =~ ... (4.15.6d)

Then from (4.15.6a) to (4.15.6d), we will be able to prove the Maxwell’s relations
(4.15.2a) to (4.15.2d) easily.

Thm 4.16



n;
Suppose i identical distinguishable particle is to distribute along a series of cells,
such that the ith cell has n; particles. Suppose a particle in the ith cell will possess a
energy ei, then the no. of way is given by

W(n,n,,..)= )t

nin b (4.16.1)
N(n,n,,...)= > n
where Z ....... (4.16.2)
Define the entropy ~ S(Ni:Np) =kINW(n,n,0) (4.16.3)

Let ™ >>1 for all i, then using Stirling formula (INn!=nlnn—n_ forn>>1 we can
prove that

S(n,,n,,...)=K[N(n,...)In N(nl,...)—Zni Inn]

If S is to maximize under the constraint

...... (4.16.4)

0: (M, Mg )= 20— No =0

gz(nl’nzv--):{zni}— E,=0
O (4.16.5) and (4.16.6)

then according to Thm 4.6,

- _aagl_ﬂaQZZO
j ony oon forj=12,... ... (4.16.7)

which will lead to that
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Thm 4.17

From (4.15.4), we have F=U-TS. Let us assume every thing in Thm 4.16 still valid. Then



F=2me-TKINNN -3 nInn]
= inigi ~TK[NIn N —ini In(Ne~"e )]
:2nigi ~TK[NInN —2ni(ln N —a-pe)]
= IZnigi —~TK[NIn N — N INN+Na+ B> ne,
_ TkNa |

D Ne“e” =N=e*(De”)=1

As i . Define the partition function
Z=>e"

e (4.17.1)
Se"=Z=>a=InZ
= F=-TkNhz (4.17.2)

Thm 4.18

A typical PVT system

Solid-iquid

oP o ,0P
) = ())r =0
Critical point &V~ "oV ov "

Thm4.19



Let G1, G2 be the Gibb’s free energy at point 1 & 2 respectively. When the system moves
along the dashes line from 1to 2, P & T keep constant. So the change in Gibb’s energy
from (4.15.5) is

dG=dU-TdS+PdV
=dQ-Tds . (4.19.02)

~G1 =G, _similariy Gr =CG» =6, =G, =G, -G, (4.19.0b)

From (4.15.6c¢),

Gy -G, =-5,(T, -T)) +V, (P, —P) (4.19.0c)

G, -G, =-S,(T, -T,)+V,(P, —P,) (4.19.0d)

Where S1, Vi, Sp, V2 are entropy and volume at point 1 & 2 respectively.

— —S,dT +V,dP = -S,dT +V,dP
= (V, —V,)dP = (S, - S,)dT

dP _S,-§
ar Vv, -V, (Clausius-Clapeyron Equation) ... (4.19.1)
Thm 4.20
) _y

In Thm 4.19, P is discontinuous at a pressure (namely P1):



oG
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oG 0 ,0G oV
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Suppose now oP is continuous at P1, but 0P 0P oP" s discontinuous
at Py, i.e.
oG 0 oG, . _ oV
(5)1 =V (ap(ap)’)’ _(6P)T
¥
T T
P, P,
Then
] . oV . oV
lim d = lim (—),dT + lim (). dP
A V) =lm GpedT + M GdedP (4.20.0a)
] . oV . oV
lim d = |lim (—),.dT + lim (<), dP
PR V) P»Pf(éT)P P%PJ(GP pdboo (4.20.0b)
lim d(v) = lim d(V)
As PR PR , we have
. oV . oV . oV . oV
(le’(ﬁ)': - le*(a_T)P)dT = (JL”}J{(E)T - Jm+(a_P)T)dP
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GG (4.20.1)
oG o ,0G 0S
_P=_S. . (== )) _(_P. . .
Suppose OT is continuous at T; but 0T dT oT " is discontinuous at

T1, then similar to the above argument,

85 85
dP T"lnl( s l(aT)
daT
iim (2 - lim (f)
oot swer (4.20.2)
Thm 4.21

Consider the W given in (4.8.1). Suppose for all i, gi >> n;, then

(9; +n —(g; +n, —2)---(9;) (g)
W — 1 1 1 1 1
[l n;! H ...... (4.21.1)

Consider the W given in (4.11.1). Suppose for all i, gi >> nj, then

(gi)!(gi _1)!"'(gi - +1)! (gi)n'
e 113
i i comE (4.21.2)

.. For Bose-Einstein & Fermi-Dirac System, if gi >>niforall i, .....(4.21.3) we can use

treatment similar to the Maxwell Boltzmann System as in Thm. 4.7.
Thm 4.22
Assume we are talking about the system described in Thm 4.16,

0 _ia_zz_li —Bsi :_i _ o p P :i o P
aﬂl nzZ = T zaﬂ(ze ) (From (4.17.1)) ZZ &e Zzijg.e

U :Zni &; :ZNe_aeiﬂé‘igi ZNe_aeiﬂgi =N
By definition i i CAlso, i

=e“Z=1=>U-= NEZe’/’é‘gi - NZinz
Z% 0B

...... (4.22.1)

Thm 4.23



Assume we are still talking about the system described in Thm 4.16. Suppose each cell is

nph

&L & eR Nph
formed by a point in the phase space H{é. i € }such that the cell at 16i}ia pOSsess an
energy
&= Z A§i2
i=1

...... (4.23.1)

Then the partition function will be given by (4.17.1)

Nph
-BQYAE)
2= "

n

éh{é:i,l 1€ (&.&+A8)}

Let in the phase space it , the no. of state is given by
9 (é":l’ o ’gnph )Aé:l o 'Aé:”ph then

e e (S AE)
Z:J' ...Loe (G &, )dG - dE,

p

Suppose g(gl"""/’?"ph)is a constant, independent of S1ree 1o , then

Z=g[[[ e de =g [ =g ™ “[[()”
i-1 "~ i1 PA i-1
:%: Mon 1
o 2p
From (4.22.1),

n
U--N1% :—ﬂ(——p")z 1 NN, KT

Zop 2 250 2 . (4.23.2)



