Statistical Mechanics (4)

Def 4.1

Consider a gas inside a piston. Define $d Q$ to be the thermal energy transferred from the surrounding to the system.

Define $d U$, the change of internal energy of the gas to be
$d U=d Q-P d V$

Define molar heat capacity of the gas at constant volume be

$$
\begin{equation*}
C_{v}=\frac{1}{\mu}\left(\frac{\partial Q}{\partial T}\right)_{V} \tag{4.1.3}
\end{equation*}
$$

where $\mu_{\text {is the no. of mole of the gas. Define the molar heat capacity of the gas at }}$ constant pressure to be
$C_{P}=\frac{1}{\mu}\left(\frac{\partial Q}{\partial T}\right)_{P}$
Define $\quad \gamma=\frac{C_{P}}{C_{V}}$
Thm 4.2

Suppose a gas in a piston obey ideal gas law (i.e. $P V=\mu R T=N k T$) and that $\left(\frac{\partial U}{\partial V}\right)_{T}=0$ and that γ is a constant (independent of any variable), then it can be proven that if the gas undergo adiabatic process (i.e. $d Q=0$), then P, V must obey the following rule

$$
\begin{equation*}
P V^{\gamma}=\text { constant } \tag{4.2.1}
\end{equation*}
$$

Thm 4.3
It can be verified from experiment that for all kind of gas in piston,

$$
\begin{equation*}
\left(\frac{\partial U}{\partial V}\right)_{T}=0 \tag{4.3.1}
\end{equation*}
$$

This law is called the Joule's Law.

Def 4.4

If a gas is piston obey ideal gas law, it can be proven that

$$
\begin{equation*}
C_{P}-C_{V}=R \tag{4.4.1}
\end{equation*}
$$

Def 4.5

A process undergo by a gas in a piston is reversible iff
I. The process is very slow such that at each time in the process, the system is in equilibrium (settled down)
II. The work done by the system must equal to $P d V$ (i.e. no energy dissipation due to friction, etc.)

Thm 4.6
Suppose function $f=f\left(x_{1}, \ldots, x_{n}\right)$ is to be maximized under the constraint

$$
\left\{\begin{array}{c}
g_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \tag{4.6.1}\\
\vdots \\
g_{p}\left(x_{1}, \ldots, x_{n}\right)=0
\end{array}\right.
$$

Then the problem can be solved by solving the simultaneous equations:

$$
\left\{\begin{array}{l}
\frac{\partial f}{\partial x_{j}}+\lambda_{1} \frac{\partial g_{1}}{\partial x_{j}}+\cdots+\lambda_{p} \frac{\partial g_{p}}{\partial x_{j}}=0 \quad \text { for } j=1, \ldots, n \tag{4.6.2}\\
g_{1}\left(x_{1}, \ldots, x_{n}\right)=0 \\
\quad \vdots \\
g_{p}\left(x_{1}, \ldots, x_{n}\right)=0
\end{array}\right.
$$

which involve $n+p$ unknown: $x_{1}, \ldots, x_{n} ; \lambda_{1}, \ldots, \lambda_{p}$ and $n+p$ equations.

Thm 4.7

If $\sum_{i} n_{i}$ identical distinguishable particle is to distribute along the energies, such that the no. of cell with energy ε_{i} is g_{i} and the no. of particle with energy ε_{i} is n_{i}, then the no. of way is given by
$W\left(n_{1}, n_{2}, \ldots\right)=\frac{\left(N\left(n_{1}, n_{2}, \ldots\right)\right)!}{n_{1}!n_{2}!\cdots} * g_{1}^{n_{1}} g_{2}^{n_{2}} \ldots$
where $N\left(n_{1}, n_{2}, \ldots\right)=\sum_{i} n_{i}$

Define the entropy $S\left(n_{1}, n_{2}, \ldots.\right)=k \ln W\left(n_{1}, n_{2}, \ldots\right)$
Let $n_{i} \gg 1$ for all i, then using Stirling formula $(\ln n!=n \ln n-n \quad$ for $n \gg 1)$, we can prove that
$S\left(n_{1}, n_{2}, \ldots\right)=k\left[N\left(n_{1}, \ldots\right) \ln N\left(n_{1}, \ldots\right)-\sum_{i} n_{i} \ln n_{i}+\sum_{i} n_{i} \ln g_{i}\right]$
If S is to maximize under the constraint
$g_{1}\left(n_{1}, n_{2}, \ldots\right)=\left\{\sum_{i} n_{i}\right\}-N_{0}=0$
$g_{2}\left(n_{1}, n_{2}, \ldots\right)=\left\{\sum_{i} n_{i}\right\}-E_{0}=0$
$\ldots(4.7 .5)$ and (4.7.6)
then according to Thm 4.6,
$\frac{1}{k} \frac{\partial S}{\partial n_{j}}-\alpha \frac{\partial g_{1}}{\partial n_{j}}-\beta \frac{\partial g_{2}}{\partial n_{j}}=0$

$$
\begin{equation*}
\text { for } j=1,2, \ldots \ldots \tag{4.7.7}
\end{equation*}
$$

which will lead to that
$n_{j}=N_{0} g_{j} e^{-\alpha} e^{-\beta \varepsilon_{j}} \quad$ for $j=1,2, \ldots \ldots$
Suppose after S is maximized under the two constraint (4.7.5), (4.7.6), suddenly the total internal energy is changed by $d U$. Let the change of no. of particle with energy ε_{i} is $d n_{i}$. Since $U\left(n_{1}, n_{2}, \ldots\right)=\sum_{i} n_{i} \varepsilon_{i}$, then
$d U=\sum_{i} \frac{\partial U}{\partial n_{i}} d n_{i}=\sum_{i} \varepsilon_{i} d n_{i}$
From (4.7.7), we have

$$
\frac{1}{k} \frac{\partial S}{\partial n_{j}}-\alpha-\beta \varepsilon_{j}=0 \quad \text { for } j=1,2, \ldots \ldots \quad \Rightarrow \sum_{j}\left(\frac{1}{k} \frac{\partial S}{\partial n_{j}}-\alpha-\beta \varepsilon_{j}\right) d n_{j}=0
$$

Let the total no. of particle is not changed:
$\Rightarrow \frac{1}{k} d S=\beta \sum_{j} \varepsilon_{j} d n_{j}=\beta d U=\beta d Q$
(Assume no volume change)
By comparing with the formula $d S=\frac{d Q}{T}$, we have $\beta k=\frac{1}{T}$ or
$\beta=\frac{1}{k T}$

Thm 4.8
If $\sum_{i} n_{i}$ identical indistinguishable particles is to distribute along the energies, such that the no. of cell with energy ε_{i} is g_{i} and the no. of particles with energy ε_{i} is n_{i}, then the no. of way is given by
$W\left(n_{1}, n_{2}, \ldots\right)=\prod_{i} \frac{\left(n_{i}+g_{i}-1\right)!}{n_{i}!\left(g_{i}-1\right)!}$
Let $n_{i} \gg 1$ for all I, and use Stirling formula, we can prove that
$S\left(n_{1}, n_{2}, \ldots\right)=k \sum_{i}\left[\left(n_{i}+g_{i}-1\right) \ln \left(n_{i}+g_{i}-1\right)-n_{i} \ln n_{i}-\left(g_{i}-1\right)-\ln \left(g_{i}-1\right)!\right]$
If S is to maximize under the constraint $g_{1}\left(n_{1}, n_{2}, \ldots\right)=\left\{\sum_{i} n_{i} \varepsilon_{i}\right\}-E_{o}=0$, , then according to Thm 4.6
$\frac{1}{k} \frac{\partial S}{\partial n_{j}}-\beta \frac{\partial g_{1}}{\partial n_{j}}=0$

$$
\begin{equation*}
\text { for } j=1,2, \ldots \tag{4.8.3}
\end{equation*}
$$

which lead to $n_{j}=\frac{g_{j}-1}{e^{\beta \varepsilon_{j}}-1} \approx \frac{g_{j}}{e^{\beta \varepsilon_{j}}-1} \quad$ (if $g_{i} \gg 1$)

Thm 4.9

Assume in a cubic box of side L, and set the periodic boundary condition to photon:
$\mathbf{k}=\frac{2 \pi}{L}\left(n_{1} \mathbf{e}_{x}+n_{2} \mathbf{e}_{y}+n_{3} \mathbf{e}_{z}\right)$
Let $\rho^{2}=n_{1}^{2}+n_{2}^{2}+n_{3}^{2}$
Then the no. of photon between ρ and $\rho+d \rho$ is $2\left(4 \pi \rho^{2}\right) d \rho$
where the factor 2 comes from that photon have two direction of polarization. Substitute (4.9.1), (4.9.2) into (4.9.3), we have the no. of photon between v and $v+d v(v$ is frequency) is $2\left(4 \pi\left(\frac{L}{c}\right)^{3} v^{2}\right) d v$
and the total energy of photons between v and $v+d v$ is therefore by substitution into (4.8.4):
$d E=\frac{h v(2) 4 \pi\left(\frac{L}{c}\right)^{3} v^{2} d v}{e^{\frac{h v}{k T}}-1}$
and so energy volume density of photon between v and $v+d v$

$$
\frac{d E}{L^{3}}=\frac{8 \pi h v^{3} d v}{c^{3}\left(e^{\frac{h v}{k T}}-1\right)}
$$

(Planck Radiation Formula)

By special mathematics technique (Appendix A of "Statistical Physics", by F. Mandl), it can be evaluate that
$\int_{o}^{\infty} \frac{1}{L^{3}} \frac{d E}{d v} d v=a T^{4}$
$\ldots \ldots$ (4.9.6) $\quad\left(a=\frac{\pi^{2} k^{4}}{15 \hbar^{3} c^{3}}=7.56 \times 10^{-16}\right)$

According to the corpuscle picture of photon, rate of energy passing through a certain area should be linearly related with the energy volume density, therefore, we can infer the wall of the box, which is a blackbody and have the same temperature with the photons radiates as
$R \propto T^{4}=e \sigma T^{4} \quad$ (Stefan-Boltzmann Law)
where R is the energy per unit area per unit time, $\sigma=\frac{a c}{4}$ is the Stefan constant, e is the emissivity. For perfect reflector, $e=0$, and for blackbody, $e=1$.

Thm 4.11

If $\sum_{i} n_{i}$ identical indistinguishable particles is to distribute along the energies, such that the no. of cell with energy ε_{i} is g_{i} and the no. of particle with energy ε_{i} is n_{i}, and that every cell can only accommodate 1 particle, then the no. of way is given
by(4.11.0)
$W\left(n_{1}, n_{2}, \ldots\right)=\prod_{i} \frac{g_{i}!}{n_{i}!\left(g_{i}-n_{i}\right)!}$
Let gi is large enough, such that both g_{i}, n_{i} and $g_{i}-n_{i}$ are large enough to apply the Stirling formula
$\left\{\begin{array}{l}\ln g_{i}!\approx g_{i} \ln g_{i}-g_{i} \\ \ln n_{i}!\approx n_{i} \ln n_{i}-n_{i} \\ \ln \left(g_{i}-n_{i}\right)!\approx\left(g_{i}-n_{i}\right) \ln \left(g_{i}-n_{i}\right)-\left(g_{i}-n_{i}\right)\end{array}\right.$

Then the entropy can be given by

$$
\begin{align*}
& S\left(n_{1}, \ldots\right)=k \sum_{i}\left[g_{i} \ln g_{i}-g_{i}-n_{i} \ln n_{i}+n_{i}-\left(g_{i}-n_{i}\right) \ln \left(g_{i}-n_{i}\right)+\left(g_{i}-n_{i}\right)\right] \\
&)
\end{align*}
$$

If S is to maximize under the constraint

$$
\begin{align*}
& g_{1}\left(n_{1}, n_{2}, \ldots\right)=\left\{\sum_{i} n_{i}\right\}-N_{0}=0 \\
& g_{2}\left(n_{1}, n_{2}, \ldots\right)=\left\{\sum_{i} n_{i}\right\}-E_{0}=0 \tag{4.11.4}
\end{align*}
$$

Then according to Thm 4.6,
$\frac{1}{k} \frac{\partial S}{\partial n_{j}}-\alpha \frac{\partial g_{1}}{\partial n_{j}}-\beta \frac{\partial g_{2}}{\partial n_{j}}=0$

$$
\begin{equation*}
\text { for } j=1,2, \ldots \ldots \tag{4.11.6}
\end{equation*}
$$

which will lead to that

$$
\begin{equation*}
n_{j}=\frac{g_{j}}{e^{\alpha} e^{\beta \varepsilon_{i}}+1} \tag{4.11.7}
\end{equation*}
$$

Since $\quad \lambda v=c \Rightarrow v=c / \lambda \Rightarrow d v=-\frac{c}{\lambda^{2}} d \lambda$. So from (4.9.5), we have
$\frac{d E}{L^{3}}=\frac{8 \pi h\left(\frac{c^{3}}{\lambda^{3}}\right) \frac{c}{\lambda^{2}} d \lambda}{c^{3}\left(e^{h c / \lambda k T}-1\right)}=\frac{8 \pi h c d \lambda}{\lambda^{5}\left(e^{h c / \lambda k T}-1\right)}$

So the energy volume density of photon between $(\lambda, \lambda+d \lambda)$ is given by (4.12.1). To find the value of λ where $\frac{1}{L^{3}} \frac{d E}{d \lambda}$ is maximum, we have

$$
\begin{equation*}
\frac{d}{d \lambda}\left(\frac{1}{L^{3}} \frac{d E}{d \lambda}\right)=0 \tag{4.12.2}
\end{equation*}
$$

From (4.12.2), we have $\lambda_{\text {max }}$, the value of λ where $\frac{1}{L^{3}} \frac{d E}{d \lambda}$ is maximum is given by

$$
\begin{equation*}
\lambda_{\max } T=2.898 \times 10^{-3} \tag{4.12.3}
\end{equation*}
$$

(Wien's displacement Law)

Thm 4.13
When $\frac{1}{L^{3}} \frac{d E}{d \lambda}$ in (4.9.5) is plotted against v, we have

Figure 4.13.1

Thm 4.14

From formula (4.7.3), we know that $S=S\left(n_{1}, n_{2}, \ldots\right)$. If for every moment, S is to be maximized under the constraint (4.7.5) \& (4.7.6), we have in (4.7.8) $n_{i}=n_{i}(N, E)$, where N, E is the total no. of particle and total energy respectively. Then $S=S\left(n_{1}(N, E), n_{2}(N, E), \ldots\right)$. Define the chemical potential
$\mu=-T\left(\frac{\partial S}{\partial N}\right)_{E}$

From (4.7.7), we have
$\frac{1}{k} \frac{\partial S}{\partial n_{i}}(N, E)-\alpha-\beta \varepsilon_{i}=0$
$\Rightarrow \frac{1}{k} \sum_{i} \frac{\partial S}{\partial n_{i}}(N, E) \frac{\partial n_{i}}{\partial N}=\sum_{i}\left(\alpha+\beta \varepsilon_{i}\right) \frac{\partial n_{i}}{\partial N}$
L.H.S. $=\frac{\partial S}{\partial N}$

Consider the functions $f_{1}(N, E)=\sum_{i} n_{i}(N, E)=N \Rightarrow \frac{\partial f_{i}}{\partial N}=\sum_{i} \frac{\partial n_{i}}{\partial N}=1$.
$f_{2}(N, E)=\sum_{i} n_{i}(N, E) \varepsilon_{i}=E \Rightarrow \frac{\partial f_{i}}{\partial E}=0$
\therefore R.H.S. $=\alpha$
$\Rightarrow \alpha=\frac{1}{k} \frac{\partial S}{\partial N}=-\frac{\mu}{k T}$

Thm 4.15

Suppose two variables out of four variables: T, V, S, P are independent variables. Suppose, there exist a U, such that U can be written as the function of any two independent variables out of T, V, S, P and that if we take S, V as the two independent variable, we will have
$d U=T d S-P d V$
Then we can prove the "Maxwell relations":

$$
\begin{array}{lll}
\left(\frac{\partial S}{\partial V}\right)_{T}=\left(\frac{\partial P}{\partial T}\right)_{V} & \ldots . .(4.15 .2 \mathrm{a}) & \left(\frac{\partial S}{\partial P}\right)_{T}=-\left(\frac{\partial V}{\partial T}\right)_{P} \tag{4.15.2b}\\
\left(\frac{\partial V}{\partial S}\right)_{P}=\left(\frac{\partial T}{\partial P}\right)_{S} & \ldots \ldots(4.15 .2 \mathrm{c}) & \left(\frac{\partial T}{\partial V}\right)_{S}=-\left(\frac{\partial P}{\partial S}\right)_{V}
\end{array}
$$

Proof:

Firstly, define the function H (enthalpy), F (Helmhotz's free energy) and G (Gibb's free energy) by

$$
\begin{align*}
& H=U+P V \tag{4.15.3}\\
& F=U-T S \tag{4.15.4}\\
& G=U-T S+P V \tag{4.15.5}
\end{align*}
$$

Then take the total differentiation $d H, d F$ and $d G$, and make use of (4.15.1), we will get

$$
\begin{align*}
& d H=T d S+V d P \tag{4.15.6a}\\
& d F=-S d T-P d V \tag{4.15.6b}\\
& d G=-S d T+V d P \tag{4.15.6c}
\end{align*}
$$

Let us repeat (4.15.1) here
$d U=T d S-P d V$
Then from (4.15.6a) to (4.15.6d), we will be able to prove the Maxwell's relations (4.15.2a) to (4.15.2d) easily.

Thm 4.16

Suppose $\sum_{i} n_{i}$ identical distinguishable particle is to distribute along a series of cells, such that the i th cell has n_{i} particles. Suppose a particle in the i th cell will possess a energy ε_{i}, then the no. of way is given by
$W\left(n_{1}, n_{2}, \ldots\right)=\frac{\left(N\left(n_{1}, n_{2}, \ldots\right)\right)!}{n_{1}!n_{2}!\cdots}$
where $N\left(n_{1}, n_{2}, \ldots\right)=\sum_{i} n_{i}$
Define the entropy $\quad S\left(n_{1}, n_{2}, \ldots.\right)=k \ln W\left(n_{1}, n_{2}, \ldots\right)$

Let $n_{i} \gg 1$ for all i, then using Stirling formula $(\ln n!=n \ln n-n \quad$ for $n \gg 1)$, we can prove that
$S\left(n_{1}, n_{2}, \ldots\right)=k\left[N\left(n_{1}, \ldots\right) \ln N\left(n_{1}, \ldots\right)-\sum_{i} n_{i} \ln n_{i}\right]$
If S is to maximize under the constraint
$g_{1}\left(n_{1}, n_{2}, \ldots\right)=\left\{\sum_{i} n_{i}\right\}-N_{0}=0$
$g_{2}\left(n_{1}, n_{2}, \ldots\right)=\left\{\sum_{i} n_{i}\right\}-E_{0}=0$
then according to Thm 4.6,
$\frac{1}{k} \frac{\partial S}{\partial n_{j}}-\alpha \frac{\partial g_{1}}{\partial n_{j}}-\beta \frac{\partial g_{2}}{\partial n_{j}}=0$

$$
\begin{equation*}
\text { for } j=1,2, \ldots \ldots \tag{4.16.7}
\end{equation*}
$$

which will lead to that
$n_{j}=N_{0} e^{-\alpha} e^{-\beta \varepsilon_{j}}$

$$
\begin{equation*}
\text { for } j=1,2, \ldots \ldots \tag{4.7.8}
\end{equation*}
$$

Thm 4.17
From (4.15.4), we have $F=U-T S$. Let us assume every thing in Thm 4.16 still valid. Then

$$
\begin{align*}
& F=\sum_{i} n_{i} \varepsilon_{i}-T k\left[N \ln N-\sum_{i} n_{i} \ln n_{i}\right] \\
&=\sum_{i} n_{i} \varepsilon_{i}-T k\left[N \ln N-\sum_{i} n_{i} \ln \left(N e^{-\alpha} e^{-\beta \varepsilon_{i}}\right)\right] \\
&=\sum_{i} n_{i} \varepsilon_{i}-T k\left[N \ln N-\sum_{i} n_{i}\left(\ln N-\alpha-\beta \varepsilon_{i}\right)\right] \\
&=\sum_{i} n_{i} \varepsilon_{i}-T k\left[N \ln N-N \ln N+N \alpha+\beta \sum_{i} n_{i} \varepsilon_{i}\right] \\
&=-T k N \alpha \\
& \sum_{i} N e^{-\alpha} e^{-\beta \varepsilon_{i}}=N \Rightarrow e^{-\alpha}\left(\sum_{i} e^{-\beta \varepsilon_{i}}\right)=1 \\
& \text { As } \quad \text {. Define the partition function } \\
& Z=\sum_{i} e^{-\beta \varepsilon_{i}} \\
& \Rightarrow e^{\alpha}=Z \Rightarrow \alpha=\ln Z \tag{4.17.2}\\
& \Rightarrow F=-T k N \ln Z
\end{align*}
$$

Thm 4.18
A typical PVT system

Critical point $\left(\frac{\partial P}{\partial V}\right)_{T}=\left(\frac{\partial}{\partial V}\left(\frac{\partial P}{\partial V}\right)_{T}\right)_{T}=0$
Thm 4.19

Let G_{1}, G_{2} be the Gibb's free energy at point $1 \& 2$ respectively. When the system moves along the dashes line from 1 to $2, P \& T$ keep constant. So the change in Gibb's energy from (4.15.5) is

$$
\begin{align*}
d G & =d U-T d S+P d V \\
& =d Q-T d S \tag{4.19.0a}
\end{align*}
$$

$\therefore G_{1}=G_{2}$. Similariy $G_{1^{\prime}}=G_{2^{\prime}} \Rightarrow G_{1^{\prime}}-G_{1}=G_{2^{\prime}}-G_{2}$
From (4.15.6c),

$$
\begin{align*}
& G_{1^{\prime}}-G_{1}=-S_{1}\left(T_{1^{\prime}}-T_{1}\right)+V_{1}\left(P_{1^{\prime}}-P_{1}\right) \tag{4.19.0c}\\
& G_{2^{\prime}}-G_{2}=-S_{2}\left(T_{2^{\prime}}-T_{2}\right)+V_{2}\left(P_{2^{\prime}}-P_{2}\right) \tag{4.19.0d}
\end{align*}
$$

Where $S_{1}, V_{1}, S_{2}, V_{2}$ are entropy and volume at point $1 \& 2$ respectively.

$$
\begin{align*}
& \Rightarrow-S_{1} d T+V_{1} d P=-S_{2} d T+V_{2} d P \\
& \Rightarrow\left(V_{2}-V_{1}\right) d P=\left(S_{2}-S_{1}\right) d T \\
& \Rightarrow \frac{d P}{d T}=\frac{S_{2}-S_{1}}{V_{2}-V_{1}} \tag{4.19.1}
\end{align*}
$$

(Clausius-Clapeyron Equation)
Thm 4.20
In Thm 4.19, $\left(\frac{\partial G}{\partial P}\right)_{T}=V$ is discontinuous at a pressure (namely P_{1}):

Suppose now $\left(\frac{\partial G}{\partial P}\right)_{T}=V$ is continuous at P_{1}, but $\left(\frac{\partial}{\partial P}\left(\frac{\partial G}{\partial P}\right)_{T}\right)_{T}=\left(\frac{\partial V}{\partial P}\right) T$ is discontinuous at P_{1}, i.e.

Then
$\lim _{P \rightarrow P_{1}^{-}} d(V)=\lim _{P \rightarrow P_{1}^{-}}\left(\frac{\partial V}{\partial T}\right)_{P} d T+\lim _{P \rightarrow P_{1}^{-}}\left(\frac{\partial V}{\partial P}\right)_{T} d P$
$\lim _{P \rightarrow P_{1}^{+}} d(V)=\lim _{P \rightarrow P_{1}^{+}}\left(\frac{\partial V}{\partial T}\right)_{P} d T+\lim _{P \rightarrow P_{1}^{+}}\left(\frac{\partial V}{\partial P}\right)_{T} d P$

As $\lim _{P \rightarrow P_{1}^{-}} d(V)=\lim _{P \rightarrow P_{1}^{+}} d(V)$, we have
$\left(\lim _{P \rightarrow P_{-}^{-}}\left(\frac{\partial V}{\partial T}\right)_{P}-\lim _{P \rightarrow P_{1}^{+}}\left(\frac{\partial V}{\partial T}\right)_{P}\right) d T=\left(\lim _{P \rightarrow P_{-}^{P_{-}}}\left(\frac{\partial V}{\partial P}\right)_{T}-\lim _{P \rightarrow P_{1}^{+}}\left(\frac{\partial V}{\partial P}\right)_{T}\right) d P$
$\frac{d P}{d T}=-\frac{\lim _{P \rightarrow P_{1}^{-}}\left(\frac{\partial V}{\partial T}\right)_{P}-\lim _{P \rightarrow P_{1}^{+}}\left(\frac{\partial V}{\partial T}\right)_{P}}{\lim _{P \rightarrow P_{1}^{-}}\left(\frac{\partial V}{\partial P}\right)_{T}-\lim _{P \rightarrow P_{1}^{+}}\left(\frac{\partial V}{\partial P}\right)_{T}}$

Suppose $\left(\frac{\partial G}{\partial T}\right)_{P}=-S$ is continuous at T_{1} but $\left(\frac{\partial}{\partial T}\left(\frac{\partial G}{\partial T}\right)_{P}\right)_{P}=-\left(\frac{\partial S}{\partial T}\right)_{P}$ is discontinuous at T_{1}, then similar to the above argument,
$\frac{d P}{d T}=\frac{\lim _{T \rightarrow T_{-}^{-}}\left(\frac{\partial S}{\partial T}\right)_{P}-\lim _{T \rightarrow T_{1}^{+}}\left(\frac{\partial S}{\partial T}\right)_{P}}{\lim _{T \rightarrow T_{-}^{-}}\left(\frac{\partial V}{\partial T}\right)_{P}-\lim _{T \rightarrow T_{1}^{+}}\left(\frac{\partial V}{\partial T}\right)_{P}}$

Thm 4.21
Consider the W given in (4.8.1). Suppose for all $i, g_{i} \gg n_{i}$, then

$$
\begin{equation*}
W=\prod_{i} \frac{\left(g_{i}+n_{i}-1\right)\left(g_{i}+n_{i}-2\right) \cdots\left(g_{i}\right)}{n_{i}!} \approx \prod_{i} \frac{\left(g_{i}\right)^{n_{i}}}{n_{i}!} \tag{4.21.1}
\end{equation*}
$$

Consider the W given in (4.11.1). Suppose for all $i, g_{i} \gg n_{i}$, then

$$
\begin{equation*}
W=\prod_{i} \frac{\left(g_{i}\right)!\left(g_{i}-1\right)!\cdots\left(g_{i}-n_{i}+1\right)!}{n_{i}!} \approx \prod_{i} \frac{\left(g_{i}\right)^{n_{i}}}{n_{i}!} \tag{4.21.2}
\end{equation*}
$$

\therefore For Bose-Einstein \& Fermi-Dirac System, if $g_{i} \gg n_{i}$ for all $i, \ldots . .(4.21 .3)$ we can use treatment similar to the Maxwell Boltzmann System as in Thm. 4.7.

Thm 4.22
Assume we are talking about the system described in Thm 4.16,
$-\frac{\partial}{\partial \beta} \ln Z=-\frac{1}{Z} \frac{\partial Z}{\partial \beta}=-\frac{1}{Z} \frac{\partial}{\partial \beta}\left(\sum_{i} e^{-\beta \varepsilon_{i}}\right)$ (From (4.17.1)) $=-\frac{1}{Z} \sum_{i}-\varepsilon_{i} e^{-\beta \varepsilon_{i}}=\frac{1}{Z} \sum_{i} \varepsilon_{i} e^{-\beta \varepsilon_{i}}$
By definition $U=\sum_{i} n_{i} \varepsilon_{i}=\sum_{i} N e^{-\alpha} e^{-\beta \varepsilon_{i}} \varepsilon_{i}$. Also, $\sum_{i} N e^{-\alpha} e^{-\beta \varepsilon_{i}}=N$
$\Rightarrow e^{-\alpha} Z=1 \Rightarrow U=N \frac{1}{Z} \sum_{i} e^{-\beta \varepsilon_{i}} \varepsilon_{i}=-N \frac{\partial}{\partial \beta} \ln Z$

Thm 4.23

Assume we are still talking about the system described in Thm 4.16. Suppose each cell is formed by a point in the phase space $\bigotimes_{i=1}^{n_{p h}}\left\{\xi_{i}: \xi_{i} \in \mathfrak{R}\right\}$ such that the cell at $\left\{\xi_{i}\right\}_{i=1}^{n_{p h}}$ possess an energy
$\varepsilon=\sum_{i=1}^{n_{p h}} A_{i} \xi_{i}^{2}$

Then the partition function will be given by (4.17.1)
$Z=\sum_{j} e^{-\beta\left(\sum_{i=1}^{n_{p h}} A_{i} \xi_{i, j}^{2}\right)}$

Let in the phase space $\bigotimes_{i=1}^{\overbrace{p h}}\left\{\xi_{i, 1}: \xi_{i, 1} \in\left(\xi_{i}, \xi_{i}+\Delta \xi_{i}\right)\right\}$, the no. of state is given by $g\left(\xi_{1}, \ldots, \xi_{n_{p h}}\right) \Delta \xi_{1} \cdots \Delta \xi_{n_{p h}}$, then
$Z=\int_{-\infty}^{+\infty} \cdots \int_{-\infty}^{+\infty} e^{-\beta\left(\sum_{i=1}^{n_{p h}} A_{i} \xi_{i}^{2}\right)} g\left(\xi_{1}, \ldots, \xi_{n_{p h}}\right) d \xi_{1} \cdots d \xi_{n_{p h}}$
Suppose ${ }^{g\left(\xi_{1}, \ldots, \xi_{n_{p h}}\right)}$ is a constant, independent of $\xi_{1}, \ldots, \xi_{n_{p h}}$, then
$Z=g \prod_{i=1}^{n_{p h}} \int_{-\infty}^{+\infty} e^{-\beta A_{i} \xi_{i}^{2}} d \xi_{i}=g \prod_{i=1}^{n_{p h}}\left(\frac{\pi}{\beta A_{i}}\right)^{1 / 2}=g \beta^{-n_{p h} / 2} \prod_{i=1}^{n_{p h}}\left(\frac{\pi}{A_{i}}\right)^{1 / 2}$
$\Rightarrow \frac{\partial Z}{\partial \beta}=-\frac{n_{p h}}{2} \frac{1}{\beta} Z$
From (4.22.1),
$U=-N \frac{1}{Z} \frac{\partial Z}{\partial \beta}=-\frac{N}{Z}\left(-\frac{n_{p h}}{2 \beta}\right) Z=\frac{1}{2} N n_{p h} k T$

