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THE LIFT OF A DELTA WING AT SUPERSONIC SPEEDS*

BY

H. J. STEWART

California Institute of Technology

1. Introduction. The use of the two dimensional linearized theory of supersonic

flows in the solution of airfoil problems as introduced by Ackeret1 has been extremely

successful in solving these problems and the results have generally been completely

satisfactory for engineering purposes. The generalization of these results to the three

dimensional finite span problems has, however, progressed rather slowly due to math-

ematical complications. The flow near the tip of a rectangular wing was given (in-

correctly) by Schlichting.2 The drag of a "delta" wing (a wing having an isosceles

triangle for its planform with the symmetric vertex pointing into the oncoming flow

as in Fig. 1) has been determined by Puckett.3 These two flow patterns and many

other technically interesting finite span flow problems are particular cases of conical

flows. A conical flow is one for which the fluid properties (pressure, velocity, etc.)

are constant along each radial line emanat-

mach cone AT THE ing from the given origin. The concept of

TRAILING EDM \ — a conjca] flow was given by Busemann4 who

developed certain general techniques for

treating these flows and who applied the

method to several problems including

Schlichting's problem.

The methods of analysis used by Buse-

mann have, however, proved to be rather

obscure, and it has been found difficult to

follow these methods in the solution of

additional conical flow problems, in par-

V/* ticular the currently very interesting prob-

lem of the lift of a delta wing. A new
Fig. 1. Delta wing in a supersonic flow. method of treating these conical flow air-

foil problems which uses the well known

theory of conformal transformation has been devised. It is the purpose of the pres-

ent paper to discuss this method and to apply this method to the problem of the

lift of a delta wing. In this application it is only necessary to consider the case for

which the leading edges of the delta wing are within the Mach cone from the vertex.

The other case for which the leading edges are outside the Mach cone has already

been solved by Puckett.

In the present method no essential mathematical difference is found in the solution

of the two cases.

* Received May 21, 1946.

• J. Ackeret, Z.F.M., 16, 72 (1925).
5 H. Schlichting, Luftfahrtforschung, 13, 320 (1936).
3 A. J. Puckett, Aero. Sci. (To be published shortly).

4 A. Busemann, Schriften der Deutschen Akademie fur Luftfahrtforschung, 7B, 105 (1943). Also

Luftfahrtforschung, 12, 210 (1935).
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2. General theory of conical flows. It is well known that the linearized theory of

steady supersonic flows is bascrl on the Prandtl-Glauert equation,

Qip 02 p d2p

(1 - M2) + +  = 0, (1)
dxi dy2 dz2

where the undisturbed flow of Mach number M is taken to be parallel to the x axis.

Here, P may denote a velocity or acceleration potential, or one of the velocity compo-

nents u, v, w in rectangular Cartesian coordinates x, y, z, or a property of the state

of this fluid such as pressure or enthalpy. It can be seen that the coordinate trans-

formation

11/2 R cos o}r *2 t/2
r = (y2 + z2) = , 

LM2 - 1 J mVM2 - 1

r y2 + z2~ri/2
n = I 1 - {M2 - 1) -—— I = [1 - (M2 - 1) tan2 <o]-"2,

(2)

6 = tan-1 (y/z),

where R = (*2-fy2+z2)l/2 and co = tan_1 [(y2+z2)1/2/a:], transforms the Prandtl-Glauert

equation, Eq. (1), into

d2P dP d T dPl 1 d2P

*sr + + ̂ r[(> - + rrT? *r - »• w
The surfaces on which 0 is constant are the meridional planes through the x axis;

the surfaces on which p. is constant are cones about the x axis; and the surfaces on

which r is constant are hyperboloids. It may also be noted that r = 0 and y.= » on

the Mach cone through the origin. Both n and r are real within the Mach cone and

complex outside it. The harmonic solutions of Eq. (3) may be written in the form

m.n U ) (.SHI (md)f

by the well known theory of the Laplace equation. Here, P™ and denote Legendre

functions of the first and second kind, respectively. By introducing the normal spheri-

cal coordinates as given in Eq. (2), Eq. (4) is seen to give the harmonic solutions of

the Prandtl-Glauert equation in spherical coordinates.

Busemann's conical flows are included in the general solution of Eq. (4) as a special

case. For example, if P is a velocity potential, then n — 1. On the other hand, if P

is one of the Cartesian velocity components (u, v, w), a property of the state of the

fluid such as the pressure or enthalpy, or the acceleration potential, then n = 0. It

is the latter case which is of particular interest here, for P is then independent of r,

and Eq. (3) becomes

d T d.p-1 d2P

("'"1)s;r-1)d+^-0- (5)
It is apparent that this may be reduced to the Laplace equation in two dimen-

sions;* in fact, if

* This result was first communicated to the author by Mr. W. D. Hayes.
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'"Vi
Eq. (5) becomes

m + i

d
s —

ds

/ dP \ d!P
Is ) + —r = 0. (6)
V ds} de2

This is the normal form of the Laplace equation in two dimensional polar coordinates.

It is seen that 5 is a function only of n and is thus constant on any one of the cones for

which co is constant. The relations between s and a> are as follows:

v/Af2 — 1 tan to
s= (7)

1 + \/l - {M- - 1) tan2 u

2s
VM* - 1 tan to =  (8)

1 + 52

It may further be noted that s = l on the Mach cone through the origin.

Since the reduction to Eq. (6) is possible, any of the quantities which P may

represent can be written as the real (or imaginary) part of an analytic function of

the complex variable where

r = se«. (9)

Furthermore, all the methods of treatment of such functions, in particular the method

of conformal transformation, may be used in the analysis of these quantities. If P is

the harmonic conjugate of P and

P + iF = P(f), (10)

the Cauchy-Riemann equations for these conjugate functions may be written

dP d'P dP
s =   = (m2 - 1) >

ds 86 dti
(11)

dP dP dP
 — s = (m2 - 1) — •

d6 ds dn

In the direct airfoil problem, the airfoil geometry is given, and if the z axis is

taken normal to the airfoil plane, the boundary conditions for determining the flow

are thus given in terms of the disturbance velocity component w. It is desired in this

case to compute the pressure distribution which may be easily expressed in terms of

the axial disturbance velocity component u. In the inverse airfoil problem, a pressure

distribution is defined, and it is desired that the airfoil shape be computed. In either

case the boundary condition is given in terms of one velocity component and another

velocity component gives the desired result. For a conical flow there are simple rela-

tions between the complex functions representing the various Cartesian velocity com-

ponents. The use of these relations is the essence of the present method of treatment

of conical flows. These relations between the complex functions corresponding to the

Cartesian disturbance velocity components u, v, w which will be written
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u + iu = U(f), v + iv = V(f), w + iw = W(f), (12)

are essentially the vorticity relations.

The fundamental linearized relations governing the steady flow of a fluid at super-

sonic speeds arc the vorticity relations

dv dw du dw du dv
, (13) T - —' (14) . =-• (15)

dz dy dz dx dy dx

and the linearized equation of continuity

dv dw du
+ (^_d (16)

ay dz ox

If these are solved simultaneously, it is easily seen that each of the velocity compo-

nents obeys the Prandtl-Glauert equation, Eq. (1). For any conical flow each of the

velocity components must be a function only of the coordinates n and 6. By means of

this fact, Eqs. (13) to (16), respectively, may be written as follows:

/ dv dw\ / dw dv\
m(m2 — 1) I cos 6 sin 6 1 = ( cos 8 1- sin 6 — 1, (17)

V dju 3m / \ dO ddj

(/i2 — l)8'2 dw du du
 .  = m(m2 _ 1) cos 6 sin 6 — > (18)

Vm 2 - l du de

(/i2 — l)3'2 dv du du
— --  = /i(ju2 — 1) sin 0 i- cos 0 — > (19)

\/ M2 — 1 dfi du dO

,  du / dv dw\
— VMi — 1 (m2 — l)"2 = /i(^2 — 1) I sin 0 1- cos 6 )

dfi \ du du f

/ dv dw\
+ I cos 6 sin 6 ). (20)

\ dd d6 )

If Eqs. (18) and (19) are combined, it is seen that

du Gu2 - l)"5

dd VM2

l)s's / dv dw\
  [ cos 8 sin e ), (21)
- 1 V du du)

du (n2 — l)"2 / dv dw\

V = ~ ~7^t==\ (sin 6 r + cos0 !/■ (22)
on v M 1 \ o/jl on /

Furthermore, Eqs. (20) and (22) show that

M2 — 1 / dv dw\ / dv dw\
 ( sin e (-■ cos 0 ) = — I cds 6 sin 8 J. (23)

fx \ d/x dfi) \ do de J

If the derivatives with respect to n are eliminated from Eqs. (17) and (23) by

means of the Cauchy-Riemann equations [cf. Eq. (11)] for v, w, v and w, these equa-

tions may be written as follows:
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1 / bv bw\ / bv bw\
— I sin 8 (- cos 0 J — ( cos 6 sin 6 1=0, (24)
H \ dd bB ) \ dd 00)

1 / bv dii'\ / dv bw\
— I sin 9 (- cos 6 ) + I cos 6 sin 6 — ) — 0. (25)
H \ 66 bd) \ dd be)

If Eq. (25) is multiplied by i and added to Eq. (24), it is seen that

i / dv aw\ / bV aw\
— ( sin 8 (- cos 6 ) + M cos 6 sin 6 ) = 0. (26)
n \ be be) \ be be)

Since V and W are functions of the complex variable this may further be written

AS rfW in sin 6 — cos e

d£ d$ sin 6 + »V cos 6

and, by the definition of s and Eq. (9),

(27)

dV 1 - f2 dW
 = i    (2&)
dt; 1 + f2

A similar treatment of Eqs. (21) and (22), V being eliminated by Eqs. (17) and (27),

shows that

dV 2r dW    V-   (29)
(1 + rJ) VAf! - 1 #

f These two relations, Eqs. (28) and (29), are

the fundamental relations for the present

treatment of conical supersonic flow prob-

^ \ Iems.

j \ 3. Example. Lift of a delta wing. The
I \ general techniques developed in the previous

,m£    w * w»"7 -j | section will now be used to compute the lift

I
\
\
\

-i*» j of a delta wing at a small angle of attack

/ for the case in which the leading edges are

/ inside of the Mach cone (see Fig. 1). The z

axis is taken normal to the airfoil. The con-

ditions in the f plane are shown in Fig. 2.

Note that the airfoil cuts the f plane on the

Fig. 2. Boundary conditions in the f plane, imaginary axis. The boundary conditions for

determining the vertical velocity w are then

w = 0 on s = 1,
(30)

w = wo — — Ua on the airfoil,

where U is the velocity of the mean flow and a is the angle of attack of the airfoil.

This boundary value problem can be solved by conformal transformation. First,

apply the transformation

(31)
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This maps the interior of the unit circle in the f plane into the entire fi plane with

the region Ret > 0 corresponding to the region /m£"i>0. This transformed plane is

imt,

-7  v-»"> y"1". W'Ci

-i/l -1

Fig. 3. Boundary conditions in the fi plane.

shown in Fig. 3. The points at the wing tips, f = ±iso, arc transformed into the points

= +\/k where
2so

Second, apply the transformation

k = = y/M* ~ 1 tan wo. (32)
1 + A

-fJ 0 Vd - r?)(i - *S*D
(33)

i.e.,

fi = sniti), (34)

where the elliptic function has the modulus k. Then the region Im£i>0 is mapped

into the rectangle having its corners at ±K, iK'±K where K and K' are the

complete elliptic integrals of the first kind having a modulus of k and k' where

  1«— si
(35,

By integrating around the slit from — 1 to 1 in the fi plane, it is seen that the region

JwfiCO maps into the rectangle having corners at ^2 = 2K±K, 2K±K+iK'.

Now, the transformation given by Eq. (31) is double valued, i.e., two points in

the f plane correspond to each point in the plane. The fi plane must thus be con-

sidered as a two sheeted Riemann surface with one sheet corresponding to the interior

of the unit circle in the J" plane and the other sheet corresponding to the exterior of

the unit circle in the f plane. Furthermore, the value of the downwash velocity w

must be equal and opposite at inverse points in the f plane. This permits the analytic

continuation of w throughout the entire f plane; in particular it is seen that w = —w<,

on the exterior points corresponding to the airfoil. The two sheets in the fi plane

are connected through the slit from —1 to +1. A contour cutting this line passes

from the upper to the lower sheet or vice-versa. The sheet which corresponds to the

exterior region of the f plane is thus seen to be mapped into the rectangle having

corners at £t = K ±2K, K±2K—iK'. The entire plane is mapped into a basic rec-
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tangle in the f2 plane as shown in Fig. 4. As ft has periods of 4K, 2iK' [sec Eq. (34)]

in ft, this pattern is repeated throughout the ft plane.

1 k Im ( ^

iK" Vf"'
+

* 0

I K 2K 3K

^ 1 I

R'C»

■ - w#

Fig. 4. Boundary conditions in the ft plane.

The function dW/d$2 (but not W itself) must be doubly periodic in the ft plane

with periods 4K and 2iK', the first corresponding to a loop around the points ft = ± 1

and the second corresponding to a loop around the points ft = l, l/k or —1, —\/k.

The only singularities of W or <fW/dft must be at the points corresponding to the air-

foil leading edges, i.e., at the points conjugate to iK' ±K. Finally dW/dft must be

pure imaginary on the lines Im^ = nK' and Re£2 = K-\-2nK (n being any integer).

All of these conditions are satisfied by the Jacobian elliptic function

 = tDftP-fo), (36)
d$ i

where n is any positive integer and D is a real constant. If this is integrated it is seen

that for «>0, W has a pole of order 2« — 1 at the wing tips. The cases for n> 1 can

then be discarded as the singularity at the wing tips is seen to correspond to a source-

sink complex which has an infinite total lift. Furthermore, the case for n — 0 may be

discarded as [see Eq. (29)] it requires that U(f) have a logarithmic singularity on the

Mach cone. The appropriate solution is thus

 = iDcd\Si). (37)
2

The constant D may be evaluated from the fact that

■iJC' <fW

d£t

If this integration is carried out, it is seen that

wo
( riK' dw i

(38)

(39)
E(k')

where E(k') is the complete elliptic integral of the second kind having a modulus k'

as given by Eq. (35).

If the variable ft is eliminated from Eq. (37) by means of Eq. (31) and (33), it is

seen that
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</W 2 wo (1 + D5

<!$ kE(k') r / i \i3/2

[V+

(40)

Thus, from Eq. (29),

du 4wo ffi + r2)

dt kE{k'WM*-\ r ~. ~~T 1\13'[„+„(,+i)r
(41)

Since U = 0 at f = l, the integral of Eq. (41 ̂  is

kw0 f- — 1
U = "      (42)

E(k')\/M2 - 1 r / lXl"2

On the top side of the airfoil f =ijj where —sn<r) <.t0, so

kwe 1 + if

p, -7»"(i-T)f
This result may be considerably simplified if we introduce [from Eq. (8) and (30) ]

k = \/M2 — 1 tan wo
(44)

Wo = — Ua

and

tan w
t =

tan o!0

Equation (43) then becomes

4 / u \ 4 tan w0

~ Eik'WV^l1' (4a)

The slope of the lift curve rfCi/rfa is given by the mean value of 4/«(w/U) over

the surface of the wing; thus

dCl 4 Csee* udu
 =   | v  (46)
da E(k')J o Vl - t'-

and, by Eq. (44),

dCi. 2ir tan «o

da ~ E(k')
(47)

In the limit for which co0 or s0—>0, k'~>1; so E(k')—>1. For this case which was given

by Jones5

* R. T. Jones, N.A.C.A., Technical Note 1032 (1945).
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wjfVT 40^
4 <a
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Kic. 5. Lift of a delta wing.

*h.
4*

0.4

9

M

Fig. 6. dCiJda vs. M for a delta wing with o> = 10°.

dCL
= 2i tan wo. (48)

da

On the other limit for which s0—>1, >0; so E(k')—*ir/2. For this case

dCL 4
—— = 4 tan hi0 = —  • (49)

da \ZM* - 1

This limit, the same as the two dimensional solution, had previously been obtained

by Puckett.

It may further be noted that the quantity Ja/tI/1—1 dC^/dci is a function only

of the parameter k = \'M'1— 1 tan u0. This result is shown graphically in Fig. 5, and

the slope of the lift curve for a particular case, w0 = 10°, is shown as a function of

Mach number in Fig. 6.


