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Abstract

Background: The purpose of this study was to develop a deep learning classification approach to 

distinguish cancerous from noncancerous regions within optical coherence tomography (OCT) 

images of breast tissue for potential use in an intraoperative setting for margin assessment.

Methods: A custom ultrahigh-resolution OCT (UHR-OCT) system with an axial resolution of 

2.7 μm and a lateral resolution of 5.5 μm was used in this study. The algorithm used an A-scan-

based classification scheme and the convolutional neural network (CNN) was implemented using 

an 11-layer architecture consisting of serial 3 × 3 convolution kernels. Four tissue types were 

classified, including adipose, stroma, ductal carcinoma in situ, and invasive ductal carcinoma.

Results: The binary classification of cancer versus noncancer with the proposed CNN achieved 

94% accuracy, 96% sensitivity, and 92% specificity. The mean five-fold validation F1 score was 

highest for invasive ductal carcinoma (mean standard deviation, 0.89 ± 0.09) and adipose (0.79 ± 

0.17), followed by stroma (0.74 ± 0.18), and ductal carcinoma in situ (0.65 ± 0.15).

Conclusion: It is feasible to use CNN based algorithm to accurately distinguish cancerous 

regions in OCT images. This fully automated method can overcome limitations of manual 

interpretation including interobserver variability and speed of interpretation and may enable real-

time intraoperative margin assessment.
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INTRODUCTION

Women with early-stage breast cancer undergo breast-conserving surgery, which involves 

the local removal of tumor and surrounding disease-free (negative) margins (1). 

Approximately 23% of patients require surgical re-excision (2,3), which leads to increased 

healthcare costs and physical and psychological stress on patients and their families (4,5). 

The need for re-excision could be reduced with a rapid intraoperative margin assessment 

tool. There is no current standard of care for routine intraoperative margin assessment. 

Previously intraoperative margin assessment includes touch preparation, frozen section 

analysis, ultrasound, and specimen radiography. Although touch preparation (6) and frozen 

section analysis (7) have high-resolution, they are slow and have difficulty detecting ductal 

carcinoma in situ (DCIS). Ultrasound (8) and specimen radiography (9) are faster than 

histology-based methods, but are less sensitive and have poorer performance in detecting 

DCIS. The MarginProbe, a handheld radiofrequency spectroscopy device, was recently 

developed for intraoperative margin assessment but it has been shown that there is 

insufficient evidence to suggest that it significantly impacts clinical outcomes (10). To our 

knowledge, there is no technology that has sufficiently addressed this need to gain wide use 

for intraoperative margin assessment, thus the motivation for our work.

Optical coherence tomography (OCT) is a high-speed, microscopic imaging modality. OCT 

is the optical equivalent of ultrasound, relying on the echo of near-infrared light instead of 

sound to produce micron-scale resolution through 1–2 mm in biological tissue (11). In 

contrast to high-energy X-rays and gamma rays, OCT relies on low-energy near-infrared 

light, which is nondestructive to tissue and can resolve microscopic structures that cannot be 

seen with X-rays or computed tomography (CT), and does not require contrast injection. 

OCT is an established medical imaging technique, and has been pioneering in 

ophthalmology for the past 20 years (11–13), promising in cardiology (14,15), and recently 

emerging in breast surgery (16–22).

OCT is being investigated as an intraoperative margin assessment tool in breast surgery. 

OCT has been shown to differentiate normal breast parenchyma such as lactiferous ducts, 

glands, adipose, and lobules, as well as pathologic conditions such as DCIS, invasive ductal 

carcinoma (IDC), and microcalcifications (23). OCT allows the sample to be studied in the 

operating room in real-time, which improves the diagnostic speed compared to histology. 

OCT has been investigated in a multireader clinical study and it was demonstrated that 

radiologists are best-suited for interpreting this modality (24). Interpretation of OCT images 

is typically performed by researchers and clinicians, but manual image interpretation is 

challenging due to its slow speed and time to train readers, high interobserver variability, and 

image complexity. As a result, manual interpretation is not practical in an intraoperative 

setting. Currently, there is no standard protocol for intraoperative margin assessment and 

usually takes few days at our institution for pathology processing to determine margin status. 

Automated image analysis has the potential to improve diagnostic accuracy with lower 

interobserver variability and faster speeds, which would increase the clinical impact of OCT 

and make it more suitable for intraoperative imaging. Deep learning could be used to 

automatically analyze OCT images to reduce image interpretation time.
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Deep learning approaches have been developed for OCT imaging and breast cancer imaging, 

but very few works have investigated using deep learning for breast tissue classification 

using OCT images (25). Deep learning for OCT has been investigated more extensively for 

ophthalmology applications, including quantifying intraretinal fluid (26,27) and diagnosing 

retinal disease (28). In breast cancer imaging, deep learning has been used to explore several 

clinical problems using mammograms, MRI scans, and histology (29–35).

The purpose of this study was to develop a deep learning classification approach to 

distinguish cancerous from noncancerous regions within OCT images of breast tissue for 

potential use in an intraoperative setting for margin assessment.

MATERIALS AND METHODS

Tissue Collection

Institutional Review Board (IRB) approval was waived. Deidentified human breast 

specimens included both normal and non-neoplastic tissues, and were handled in accordance 

with Code of Federal Regulations 45CFR46. Prior to imaging, the specimens were placed in 

Rosewell Park Memorial Institute and imaged within 24 hours of surgical excision. The 

average specimen size was 1.2 cm2 (range: 1.0–4.0 cm2). 46 specimens from 23 patients 

were imaged with a custom ultrahigh-resolution OCT system. Seventeen specimens were 

normal tissue, and 29 specimens were cancerous, including 26 specimens with IDC and 

three specimens with DCIS confirmed with histological correlation.

Imaging Protocol

A custom in-house ultrahigh-resolution OCT system centered at 840 nm with an axial 

resolution of 2.7 μm and a lateral resolution of 5.5 μm measured in air was used in this study 

(20,36). This system was used because our previous work showed that images acquired with 

this system showed increased tissue classification accuracy compared to those from a 

commercial system with lower resolution (20). An OCT volume is composed of 800 by 800 

pixels laterally covering 3 mm by 3 mm tissue surface area, and 1024 pixels in the axial 

direction covering 1.78 mm in depth. All specimens were imaged fresh at room temperature.

Histology

After imaging, tissue specimens were placed in 10% formalin for 24 hours and then 

transferred to 70% ethanol for histological processing. Specimen blocks were embedded and 

sliced along the OCT imaging direction. Multiple 5-μm thick slices were taken from a single 

specimen block, with 100 μm discarded between levels and each slide stained with 

Hematoxylin and Eosin. The processed slides were digitized at 40x magnification using an 

Aperio system. ImageScope software (v12.1.0.5029) was used to view and annotate 

histology images. Histology findings were evaluated by a pathologist (H.H.) with more than 

20 years of experience. The dataset of specimens is listed in Table 1.

Image Labeling

Each A-line within every OCT B-scan was manually labeled into four tissue types: stroma, 

adipose, IDC, or DCIS. Stroma included all glandular tissue, including the parenchyma and 
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connective tissues. The labeling was guided by corresponding histology. These four tissue 

types were chosen because these are the most common features of normal and diseased 

breast tissue. Three OCT readers (B.A., X. Y, Y.G.) labeled the data with the guidance of 

histological evaluations by a pathologist (H.H).

The labeling procedure was carried out using an in-house graphical user interface that 

enables consecutive labeling for three-dimensional data (Fig 1). Two volumes were labeled 

per specimen per patient for 23 patients, corresponding to 36,800 B-scans.

Proposed Convolutional Neural Network

All software code for this study was written in Python using the TensorFlow module (1.0.0). 

Validation and convolutional neural network (CNN) training were done on a Linux 

workstation with 15 GB RAM, 946 GB disk space, Intel Xeon Silver 4110 CPU, and a 

NVIDIA Titan Xp GPU.

The deep learning algorithm utilized a customized hybrid 2D/1D CNN to map each 2D B-

scan to a 1D label vector. Further, by using serial 2D convolutional filters, prediction of 

tissue type for each A-line was in part influenced by the surrounding A-lines. This design 

choice was important given the relatively high noise present in a single A-line taken in 

isolation.

The OCT image volumes were preprocessed before the CNN analysis was performed. The 

B-scans of each volume were down-sampled from 1024 × 800 pixels to 256 × 200 pixels. A 

simple z-score transformation (x - mean/S.D.) was used to normalize the histogram of each 

volume. The number of B-scans in each volume was maintained (800 B-scans/volume). A 

single tissue label class was assigned to each A-line of the down-sampled B-scans as the 

prediction of the CNN. Eighty percent of the B-scans within a given volume were randomly 

divided into the training set, and 20% of the B-scans into the validation set.

The CNN was implemented using an 11-layer architecture consisting of serial 3 × 3 

convolutional filters applied to the down-sampled B-scans (37), with channel sizes 

increasing from 4 to 64 with increasing convolutional depth (Fig 2). Convolutional filters 

were applied with a stride of two in the superficial-to-deep dimension to collapse the image 

height, while a stride of one was applied in the left-to-right dimension to preserve image 

width. All nonlinear functions were modeled by the rectified linear unit (ReLU) (38). Batch 

normalization was used between the convolutional and ReLU layers to limit drift of layer 

activations during training (39). The feature channel sizes increased from 4 to 64 with 

increasing convolutional depth reflecting increasing representational complexity. Parameters 

were initialized using the heuristic as described (40). Training was implemented using the 

Adam optimizer, an algorithm for first-order gradient-based optimization of stochastic 

objective functions (41) and standard stochastic gradient descent technique with Nesterov 

momentum (42). L2 regularization was implemented to prevent over-fitting of data by 

limiting the squared magnitude of the kernel weights. The F1 score was used to optimize the 

parameters. To account for training dynamics, the learning rate was originally set to 3.0 × 

10−4 and was annealed and the mini-batch size was increased from size 16 whenever 
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training loss plateaus. Furthermore, a normalized gradient algorithm was employed to allow 

for locally adaptive learning rates that adjust according to changes in the input signal (43).

The A-lines in every volume were randomly divided into training and validation sets. Two 

experiments were performed: first, five-fold cross-validation was used to estimate accuracy 

over the entire dataset. Correlation with manual annotations was calculated using a F1 score 

for training and validation. The F1 score is a measure of similarity between two samples and 

is commonly used to assess the performance of image classification methods. The F1 score 

is defined as:

F1 score = 2 TP
2 TP + FN + FP

where TP is the number true positives, FN is the number of false negatives, and FP is the 

number of false positives.

Second, the entire dataset was partitioned into a single division of 80% training and 20% 

testing. Correlation with manual annotations was calculated using accuracy, sensitivity, and 

specificity for training and testing.

IRB approval was waived as this work is considered nonhuman subjects research under 

Code of Federal Regulations 45 CFR 46. Breast specimens were received from the 

Columbia University Tumor Bank, where personnel provided deidentified tissue from per 

their IRB approved protocol AAAB2667, therefore this research qualifies as nonhuman 

subject research.

RESULTS

Four different breast tissue structures were classified in this algorithm. Examples of these 

features of breast tissue in OCT images and corresponding Hematoxylin and Eosin histology 

are illustrated in Figure 3. The algorithm was used to classify these four tissue types 

individually, as well as perform a binary classification (cancer vs. no-cancer). For 

interpretation, each image (B-scan) was classified in 0.1 seconds, and each OCT 3D volume, 

composed of 800 B-scans, was classified in 80 seconds. The OCT image acquisition time to 

acquire 5 cm3 volume specimen was 4 minutes. The mean five-fold validation F1 score was 

highest for IDC (mean standard deviation, 0.89 × 0.09) and adipose (0.79 × 0.17), followed 

by stroma (0.74 × 0.18), and DCIS (0.65 × 0.15) (Table 2). IDC and DCIS were combined as 

single class (cancer), and adipose and stroma were combined as the noncancer class. Using 

this binary classification, the mean five-fold validation F1 score for cancer was 0.88 × 0.04, 

and 0.84 × 0.06 for noncancer.

In the second experiment, the entire dataset was randomly divided into 80% training and 

20% testing. The accuracy, sensitivity, and specificity of the proposed CNN for the training 

set were 95%, 96%, and 93%, respectively. The accuracy, sensitivity, and specificity for the 

testing set were 94%, 96%, and 92%, respectively.
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DISCUSSION

In this study, we designed a CNN algorithm that achieved 94% accuracy, 96% sensitivity, 

and 92% specificity in a binary classification of detecting cancerous versus non-cancerous 

tissue in OCT images of breast specimens. Our results suggest the feasibility of using deep 

learning to classify cancer in OCT images of breast tissue in an intraoperative setting rather 

than using traditional manual image interpretation. Manually classifying OCT images of 

breast tissue has been investigated in a multireader study (24). Our deep learning framework 

had higher accuracy than the 88% accuracy of seven clinician readers combined, including 

radiologists, pathologists, and surgeons.

The potential to use OCT as a tool for improving clinical decision making in the 

intraoperative setting has been studied over the past decade and shown to be promising. 

OCT can differentiate normal breast parenchyma such as lactiferous ducts, glands, adipose, 

and lobules, as well as pathologic conditions such as DCIS, IDC, and microcalcifications 

(23). In the multireader study mentioned above, clinicians (radiologists, surgeons, and 

pathologists) were trained to distinguish suspicious from nonsuspicious areas of 

postlumpectomy specimens using OCT images, and the results showed that readers from 

different specialties could accurately read OCT images with an average training time of 3.4 

hours. All clinical readers had an average accuracy of 88%. These results further validated 

the practical feasibility to use OCT as a real-time intraoperative margin assessment tool in 

breast-conserving surgery. Although clinicians can be trained to read OCT images, there 

remain practical concerns of high interobserver variability and slow speed, which make 

manual interpretation impractical for the intraoperative setting, therefore indicating a need 

for automated techniques to solve these problems.

Machine learning has been shown to be effective for classification of OCT images. Machine 

learning has been used to improve OCT glaucoma detection (44) and to segment and 

visualize retinal structures in volumetric image sets (45). Since traditional machine learning 

algorithms often require several processing steps, deep learning CNNs are being developed 

because they require less processing and mostly use an input of images. Deep learning has 

been used in OCT imaging for retinal segmentation and diagnosis of retina conditions (26), 

coronary artery classification (46), and intracoronary segmentation (47). Machine learning 

and deep learning have been shown to be effective in these areas (26,46,47) and have now 

been applied in OCT breast imaging with success.

There are limitations of this study that will be considered in future work. The first limitation 

is that this was a retrospective study with a small patient sample size based on available data 

at the time of the study. Increasing the sample size in a future prospective study will likely 

improve the classification accuracy and subject variability. It will be important to increase 

the sample size particularly of DCIS and benign cases, because these conditions were not 

represented in large quantity in our study. The number of DCIS cases was the smallest, and 

its specificity was the lowest, so analyzing many more DCIS samples could improve the 

specificity of our algorithm. The second limitation is that histology can possibly include 

false positives and false negatives, which can impact the trained model and incorporate a 

bias. Only one pathologist was a reader in this study, thus introducing a limitation to this 
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work. A general limitation of deep learning, unlike rule-based methods, is that it is difficult 

to extrapolate the internal mechanisms of a CNN, which lead to its decision-making 

capabilities (48,49). This is an area of ongoing research to uncover the reasons why deep 

learning algorithms perform well.

In conclusion, our study demonstrates the feasibility of using Convolutional Neural Network 

(CNN) algorithms to classify cancer in OCT images of breast tissue and this study presents a 

unique A-line based classification scheme that can be used in real-time applications and 

extended beyond breast imaging to other applications. Automated processing using machine 

learning algorithms can overcome challenges of interobserver variability and improve speed 

in OCT image interpretation. Automation makes it more feasible to utilize OCT in an 

intraoperative setting for margin assessment and has potential to reduce the need for surgical 

re-excision.
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Figure 1. 
Work-flow of OCT images acquisition and labeling. OCT system scans excised breast 

specimen on bench-top. Each 3D image set contains subsurface information of tissue 

structure. After imaging, specimen is sent for histology processing. Readers label each A-

line of each 3D image volume as noncancer vs cancer using histology as a guide. Scale bar = 

500 μm. OCT, optical coherence tomography. (Color version of figure is available online.)
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Figure 2. 
The CNN architecture is composed of 3 × 3 convolutions, five partially strided convolutions 

and 50% dropout in the second to last convolutional layer. The output is flattened to produce 

a dimensional column-wise feature vector, upon which a softmax classifier is used to 

produce final network outputs. (Color version of figure is available online.)
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Figure 3. 
OCT images of breast tissue structures acquired with ultrahigh-resolution OCT (UHR-OCT) 

system. (a) Stroma and adipose (b) Ductal carcinoma in situ (DCIS) (c) Invasive ductal 

carcinoma (IDC) (d-f) Images of corresponding histology (Hematoxylin-eosin stain; 

Original magnification, x40.) Scale bar: 500 μm. OCT, optical coherence tomography. 

(Color version of figure is available online.)
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TABLE 1.

Distribution of Tissue Types in Dataset. Forty-six Specimens From 23 Patients Were Imaged With a Custom 

Ultrahigh-Resolution OCT (UHR-OCT) System. Seventeen Specimens Were Normal Tissue, and 29 

Specimens Were Cancerous

Characteristic Value (n)

 Number of patients 23

 Number of specimens 46

Specimen histological confirmations

Normal 17

Cancer 29

 IDC 26

 DCIS 3
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TABLE 2.

Distribution of Tissue Types in Dataset and Corresponding Five-Fold Cross-Validation F1 Scores

Tissue Type Five-Fold Cross-Validation F1 Scores Binary Classification Five-Fold Cross-Validation F1 Scores

IDC 0.82–0.95 0.84–0.94

DCIS 0.54–0.75

Adipose 0.67–0.91 0.81–0.93

Stroma 0.61 –0.86
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