RUTGERS

Center for Advanced Infrastructure and Transportation

Mobile Hybrid LiDAR & Infrared Sensing for Natural Gas Pipeline Monitoring

Presentation for SOGO Meeting

Jie Gong, Ph.D., Assistant Professor Department of Civil and Environmental Engineering Rutgers, The State University of New Jersey Khalid Farrag, Ph.D., P.E. Gas Technology Institute

CAIT is a U.S. Department of Transportation University Transportation Center

RISE Research Group

New

Welcome People	Research Projects Teaching Resources
/elcome	Welcome
Star-Ledger on RISE research	Rutgers Infrastructure Sensing and Data Engineering (RISE) Research Group
Santy Research in USDOT RITA UTC Spotlight Sandy Research in SOE powe	
Soc news Sandy Research on PBS Utility Research	
highlighted in CAIT newsletter USDOT awards pipeline integrity	
research	

(Hurricane Sandy's Destruction Captured in LiDAR Images)

Relevant Research Themes:

- **Community Resilience and Disaster Preparedness** ٠
- **Critical Infrastructure Protection** •
- Green Buildings and Energy Efficiency ۲

Research Focus:

- Sensing and Big Data Analytics •
- Statistical Learning and Risk Analysis •
- Simulation and Visualization

Group Member:

- 5 Ph.D. Students
- 6 Master Students
- 2 Undergraduate
- 1 Post-Doc

Collaboration Centers

- Center for Advanced Infrastructure & Transportation
- Center for Green Building
- DHS Center of Excellence **CCICADA**

Funding Agency:

- US DOT
- **US HUD**
- NJ DOT •
- Port Authority
- NJBPU
- NJDEP
- Bentley Co.

A Framework for Energy Infrastructure Resilience

Spatial Sensing Technologies for Infrastructure Mapping

Mobile LiDAR (Light Detection and Ranging)

Mobile LiDAR features a combination of tools to create 3D "virtual reality" models of surface conditions.

High-Speed Laser Scanners emit millions of laser beams per second to measure the built environment **Differential GPS** records accurate vehicle position data to provide geo-references to scan data and images

Inertial Measurement Unit (IMU) measures yaw, pitch, and roll data to determine vehicle headings

Post-Sandy Mobile LiDAR Study

Spatial Sensing Technologies for Disaster Response

Spatial Sensing Technologies for Post-Disaster Mapping

	Wide Area Mapping	Terrain Change Detection	Infrastructure and Building Displacement	Structural Deformation & Assessment	Accessibility Concern
Airborne LiDAR	X	X			Air Traffic/ Cloud Coverage
SFM-based 3D Reconstruction	X	X			Air Traffic/ Cloud Coverage
Mobile LiDAR	X	X	X	X	Ground Accessibility
Static LiDAR		X	X	X	Ground Accessibility
UAV LIDAR*	X	X	X	X	FAA Regulation

* The state of UAV LiDAR is very dynamic and in flux.

A Hybrid Mobile LiDAR and Infrared System

Airborne LiDAR

Mobile LiDAR

Aerial Imagery

Google Earth Street View

Spatial Data Integration

- Data in Transit vs. Data at Rest
- Agencies/Academics/Crowd Sourcing
- Big Data Characteristics:
 Volume, Variety, Velocity, and
 Veracity

Volunteer Generated Information (VGI)

Images from Ground Survey

Images on the Internet

Images from Other Survey Teams

Spatial Data Accuracy

	Density (/m2)	Vertical Accuracy	Year
NJ State LiDAR (Pre-Sandy)	1-4 points	36.6 cm	2006&2010
USGS EARL-B (Post Sandy)	1-2 points	20 cm	2012
USACE LiDAR (Post-Sandy)	1-4 points	8.2cm	2012
NYC LiDAR (Pre-Sandy)	1-2 points	20 cm	2010
Mobile LiDAR (Post-Sandy)	1000 - 8000 points	5 cm	2012
SFM Reconstruction (Post-Sandy)	500-2000 points	20 cm	2012

Mantoloking, New Jersey

Rockaway, NYC

Post-Disaster Response Planning-Debris Field and Flow at Ortley Beach

- Yellow: Sand Debris
- Cyan: Erode Dunes
- Red:
 Destroyed
 Buildings
- Blue: Building Debris or Changes

Quantify Debris Field and Flow

Building Displacement

Multi-Scale Damage Assessment

Crowd-Sourced Storm Surge Height Estimation

Recreate Water Level During Event

Flooding Mark

Ortley Beach, 2012 Photo: Jie Gong/Rutgers

Flooding Scenario: Crossbay Avenue, Rockaway, NY

20

Risk Visualization for Crossbay Avenue 1% EL 16 Feet

Rockaway, 2012 Photo: Jie Gong/Rutgers

Risk Analysis of Post-Disaster Area [with GIS Mapping]

- 1. Select post-disaster area for risk analysis.
- 2. <u>Level-1</u> Data: Buildings, above-surface movement, and flooding.

[Use Lidar & other GIS data (FEMA)]

3. <u>Level-2</u> Data: Detailed above-surface soil Displacement & water level.

[Use Lidar & other GIS data (FEMA)]

4. <u>Level-3</u> Analysis: Soil Displacement & water level at gas distribution Lines (Mains and services).

22

1. Select Post-Disaster Area [Example: Sample Data at NJ, after Sandy]

Level-1 Data: Buildings Movement [FEMA DATA] FEMA DAMAGE CLASSIFICATION VISIBLE IMAGERY BASED CLASSIFICATION

	DAMAGE LEVEL	OBSERVED DAMAGE	Roof Covering	Roof Diaphragm	Collapsed Walls	Other Considerations	
Anne Anne Biologia	Affected	Generally superficial damage to solid structures (loss of tiles or roof shingles); some mobile homes and light structures damaged or displaced.	Up to 20%	None	None	Gutters and/or awning; loss of vinyl or metal siding	
	Minor	Solid structures sustain exterior damage (e.g., missing roofs or roof segments); some mobile homes and light structures are destroyed, many are damaged or displaced.	>20%	Up to 20%	None	Collapse of chimney; garage doors collapse inward; failure of porch or carport Mobile homes could be partially off foundation	137,369
	Major	Wind: Some solid structures are destroyed; most sustain exterior and interior damage (roofs missing, interior walls exposed); most mobile homes and light structures are destroyed.	-	>20%	Some exterior walls are collapsed.	Mobile home could be completely off foundation – if appears to be repairable.	21,981
 Affected Minor 		Storm Surge: Extensive structural damage and/or partial collapse due to surge effects. Partial collapse of exterior bearing walls.			Some exterior walls are collapsed		
 Major Destroyed 	Destroyed	Wind: Most solid and all light or mobile home structures destroyed.	-	-	Majority of the exterior walls are collapsed.		841
		Storm Surge: The structure has been completely destroyed or washed away by surge effects.	-	-	Majority of the exterior walls are collapsed		9

<u>Level-2</u>: Buildings Movement

- AffectedMinorMajor
- Destroyed

Level-2 Data: Buildings Movement, [LiDAR Data]

LiDAR Spatial Analysis Can Provide:

- Digital Surface Model (DSM)
- Digital Terrain Model (DTM)
- Digital Elevation Model (DEM)
- Triangulated Irregular Network (TIN)
- Break line
- Contours
- Vector Drawings
 - Buildings,
 - Roads,
 - Power lines.

Level-1 Data: Soil Movement, [LiDAR DATA]

Mean Change of Soil Elevation [Before & After Sandy]

Level-2 Data: Soil Movement, [LiDAR]

Data Tabulated in 50-ft Grids Mean Change of Soil Elevation [Before & After Sandy]

Level-1 Data: Flooding, [FEMA DATA]

Flood Levels After Sandy

0.0 – 1.00 ft
1.00 – 2.55
2.55 – 3.80
3.80 - 6.00

Level-2 Data: Water Level, [FEMA]

Flood Levels After Sandy

0.0 – 1.00 ft
1.00 – 2.55
2.55 – 3.80
3.80 - 6.00

Note: The distribution lines in the figure does not represent an actual system and it is made for illustration only.

Level 3 Risk Analysis: Quantify Earth Movement and Water Table.

Note: We don't need to calculate earth movement & Water table at all the 50-ft grids.

We'll focus only on the grids where mains, service lines exist.

Ta	Table					
🗄 • 🖶 • 🖫 🌄 🖸 🚚 🗙						
So	SoilChange					
Г	PeakSeaLVL	BelowWater	PostZ	FID_GRID	PreZ	ZDifference
	2.1336	-0.37975	1.75385	71	1.685293	0.068556
	2.1336	-0.384662	1.748938	72	1.684558	0.06438
	2.1336	-0.380286	1.753314	73	1.675209	0.078105
	2.1336	-0.359902	1.773698	74	1.630488	0.14321
	2.1336	-0.339451	1.794149	75	1.637051	0.157098
	2.1336	-0.324807	1.808793	76	1.670995	0.137798
	2.1336	-0.223636	1.909964	77	1.780052	0.129913
	2.1336	-0.135806	1.997794	78	1.897202	0.100592
	2.1336	-0.063536	2.070064	79	2.001032	0.069032
	2.1336	0.014354	2.147954	80	1.998357	0.149598
	2.1336	0.014529	2.148129	81	1.953615	0.194514
	2.1336	0.050543	2.184143	82	1.976818	0.207325
	2.1336	0.045084	2.178684	83	1.976818	0.201867
	2.1336	0.023328	2.156928	84	1.976818	0.18011
	2.1336	-0.080888	2.052712	85	2.033223	0.019489
	2.1336	-0.14251	1.99109	86	1.98029	0.0108
	2.1336	-0.148838	1.984762	87	1.923227	0.061534
	2.1336	-0.106819	2.026781	88	1.923227	0.103554
	2.1336	-0.056524	2.077076	89	1.966519	0.110557
	2.1336	0.007493	2.141093	90	2.016519	0.124574
	2.1336	0.024806	2.158406	91	2.009406	0.148999
	2.1336	0.016102	2.149702	92	1.962505	0.187197
	2.1336	0.055673	2.189273	93	1.973244	0.216029
	2.1336	0.060481	2.194081	94	1.968977	0.225104
	2.1336	0.051139	2.184739	95	1.997983	0.186756
	2.1336	-0.00881	2.12479	96	2.019719	0.105071
	2.1336	-0.080395	2.053205	97	2.031827	0.021379
	2.1336	-0.050443	2.083157	98	2.016686	0.066471
	2.1336	-0.063481	2.070119	99	1.982602	0.087517
	2.1336	-0.081687	2.051913	100	1.982602	0.069311

Spatial Changes in soil elevation before and after Sandy.

[Note: Z in this figure is in meters]

Spatial Changes in water table before and after Sandy.

[Note: Levels in this figure are in meters]

Deformations and strains in the pipe are modeled under to the following natural forces threats:

- 1. Vertical soil movement and settlement,
- 2. Horizontal soil movement and landslides,
- 3. Debris and horizontal forces on aboveground facilities
- 4. Flooding.

Deformations and strains in the pipelines due to soil movement are modeled using the Finite Element Program PIPLIN. The program is a special purpose commercially available program for stress and deformation analysis of pipelines.

Parameters	Range of Parameters for gas distribution lines
Ріре Туре	Steel Mains (grades A and X40),
	Plastic mains and services (PE, Aldyl-A), and
	Cast iron Mains
Pipe Size	Plastic: ¾-6 inch
	Steel: 1-4 inch
	Cast Iron: 4-12 inch
Soil Type	Loose sand
	Dense sand
	Clay
Length of moving soil section	60-120 feet
Vert. & Horiz. soil movement	1-4 ft soil movement

36

Vertical Displacement

Aboveground Displacement

Horizontal Displacement

PE Deformation Due to Vertical Soil Movement

2 – 4 inch PE Pipe Loose Sand – Settlement Length 60 -120 ft

-0.2

0.1

Post-Disaster Pipeline Risk Assessment

Questions?

gti

41