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Preface

Since posting Next to Nothing – a Single Paradigm almost three years ago I 
have been able to compose a more complete version of the paper. I here 
address the main criticism of the original, elaborate on one of its themes, and 
offer some thoughts on a related matter. Improvements have also been made 
throughout the original text (while retaining the general narrative), while the 
Abstract and many of the References are new. The proof itself remains 
unchanged. The additional Continuation section follows the main text.

Abstract

I here tackle the most enduring controversy in mathematics, namely the question of what is the 
correct foundation for calculus. This has been taken to be either infinitesimals or limits at different 
times in history. I here give a novel proof (the nilsquare-limit theorem) that these concepts are two 
aspects of the same thing – indefinite precision. This contrasts with the prevalent opinion that the two
methodologies are incompatible. The infinitesimals considered are nilpotent – a property 
uncontroversially possessed by infinitesimals before the 20th century. These are also the 
infinitesimals of smooth infinitesimal analysis (SIA) which I contrast with the more widely known 
discipline of non-standard analysis (NSA). I argue that these schools are equivalent in effect but that 
the former is more convenient. I give a graphical demonstration of the proof and a corollary which 
explicates the old idea of ‘degrees of smallness’; and then use the new perspective offered by the 
proof to reinterpret the history of calculus, placing particular emphasis on Leibniz’s efforts to justify 
his notation for calculus and Lagrange’s later efforts to do the same. I mention the ancient 
antecedents of calculus (the Methods of Exhaustion and of Mechanical Theorems) in context. I then 
cover the crisis of foundations in mathematics in the late 19th and early 20th centuries with emphasis
on the role (or lack thereof) of Cauchy, pathological functions, and the philosophies of Cantor and 
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formalism (also mentioning their antitheses – namely intuitionism and constructivism).

In conclusion I clarify the role of series in calculus, discuss how to reconcile the new paradigm with 
the law of excluded middle (LEM), and explain the close connection between this approach and finite 
difference calculus (FDC). In the Continuation I respond to a criticism of Version 1 by explaining how 
‘microlinearity’ originally justified calculus, I elaborate on an ‘increment free’ approach to calculus 
pioneered by Carathéodory, and I address a related issue – namely how the absence of a properly 
algebraic approach to calculus for most of the 20th century led to widespread confusion about how 
calculus actually works i.e. I explain Leibniz’s higher derivative notation and discuss a mistaken 
attempt to reformulate it. I then give an example of the use of differentials in ratios with an illustration.
I finally conclude by appealing that the philosophical rift between most mathematicians and the rest 
of science be remedied. Other topics covered include: the attempts of the formalists to free 

mathematics from contradiction while also admitting the Axiom of Choice (ref 23); the need for FDC 

together with a simple numerical example (refs 24 to 26); and, one of the consequences of the period
of hegemony enjoyed by formalism – namely the independent rediscovery of various aspects of its 

antithetical philosophies by various researchers (ref 37).

Introduction

To gain true understanding of a subject it can help to study its origins and how 
its theory and practice changed over the years – and the mathematical field of 
calculus is no exception to this. But calculus students who do read accounts of 
its history encounter something strange – the claim that the theory which 
underpinned the subject for two centuries after its creation was wrong and that 
it was then corrected, in spite of the fact that the original theory never produced
erroneous results. I argue here that both this characterization of the original 
theory (infinitesimals) and this interpretation of the paradigm shift to its 
successor (limit theory) are false.

The paradigm shift in question took place in the late nineteenth and early 
twentieth centuries, and was accompanied by heated debate on the merits of 
the two approaches. They were supposed to have been reconciled in the 1960s
with the invention of non-standard analysis (NSA), but this is a 
misrepresentation. The infinitesimals employed in NSA are a simplified version 
of infinitesimals as they were used until their near replacement with limits. 
Original infinitesimals always had one crucial property missing from those of 
NSA, namely they were nilpotent i.e. their higher powers were set to zero as 
they arose in derivations [1]. Since this property is, for our purposes, equivalent
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to being ‘nilsquare’ I mostly use that term here. Unfortunately, nilpotency was 
not adopted as an explicit rule from the start even though a contemporary of 
Leibniz advocated for this. The rule consequently became informal and often 
came under suspicion for being ‘non-rigorous’, and by implication liable to 
cause error. Mathematicians could however always claim that calculus by its 
nature builds curves from infinitesimal linear segments, and that therefore one 
cannot assume that the so-called law of excluded middle (LEM) applies to 
those curves (nilpotency is a corollary of this). But as the supporters of LEM 
gained influence in the late nineteenth century this position became less 
tenable; and to their mind the limit concept, sold as a complete alternative to 
infinitesimals, could finally make calculus rigorous.

I argue here that this development in the philosophy of mathematics was 
misguided – that original infinitesimals were only non-rigorous in the sense that 
they incorporated a number of deductive steps. Furthermore, those steps 
constitute a proof that the criterion of the existence of a limit is met in general 
by expressions employing nilsquare infinitesimals. That is to say, limits did not 
make calculus rigorous per se, rather they could have made original 
infinitesimals rigorous by exposing the deductive steps which had remained 
hidden. This concealment had not been deliberate – it was simply not assumed 
that LEM applies to the continuum. Consequently, sufficiently small (i.e. 
nilpotent) expressions could be ‘neglected’, an approach today known as 
smooth infinitesimal analysis (SIA). I now prove that original infinitesimals are in
fact compatible with limit theory, contrary to the common opinion that the two 
approaches represent irreconcilable philosophical positions.

The   N  ilsquare-  L  imit   T  heorem  

We begin by deriving the gradient equation. Since 1 = 1 and y = y we have:

y+dy= y+dy

y+dy= y+dx
dy
dx

(1)

3



Note that we do not assume that dy and dx are anything other than variables 
i.e. the gradient equation is simply a property of the plane. If desired we can 
convert it from the Leibniz to the Lagrange notation (with ε instead of dx as the 
increment) thus:

f (x+ε)= f (x)+εf '(x) (2)

In this form [2] the equation is used as a starting point for the derivation of the 
theorems of calculus. However, on its own it is insufficient. Since ε is a finite 
variable the equation will yield the gradients of secants, resulting in finite 
difference calculus. What if we want to do standard calculus? One of our 
options is to ‘take the standard part’ (as in NSA) at the end of derivations by 
neglecting (i.e. setting to zero) the increment ε; remembering that it is not the 
case that ε is both equal and unequal to zero, it is simply indefinitely small. But 
a simpler way of achieving the same result is to employ the nilsquare rule as in 
SIA. For example, to derive the power rule from the gradient equation we do 
this:

(x+ε)n=xn
+εxn'

xn
+nx(n−1)ε=xn

+εxn'

xn'
=nx(n−1) (3)

The second equation results from applying the binomial theorem and then SIA’s
nilsquare rule i.e. εn>1 → 0. But although the two methodologies differ in their 
main technique they do both have a cancellation by ε to isolate f’(x) from ε near 
the end – this normalizes the associated term in SIA and saves it from 
nullification in NSA. But the nilsquare rule is not just a more convenient 
alternative to taking the standard part. It seems to imply that all the higher 
power incremental terms are indefinitely small in comparison with the first 
power term – otherwise how can it be justified in its own right? Let us test this 
conjecture, first we express the two sets of terms as a ratio:

r=
±bε2

±cε3
±dε4

±...
±aε
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The letters a, b, c and so on here represent terms involving the normally 
variable x – but since our proof works for arbitrary x, we here hold it constant 
and vary (i.e. indefinitely minimize) ε. Cancelling by ε yields:

r=
±bε±cε2

±dε3
±...

±a

Any reduction in ε will now only affect the numerator, but we cannot assume 
that r will be reduced by a given reduction in ε because there are both positive 
and negative terms present – if the magnitude of the negative terms decreases 
more than that of the positive terms the value of r will increase. Does there 
always exist a smaller ε to overcome such increases? Since only the difference 
between the positive and negative sums is relevant to this question we can 
simplify the last equation thus:

r=
p−n
a

(4)

where p is the sum of the positive terms and n is the sum of the negative terms.
Since ε is indefinitely small we know that the magnitudes of both p and n can 
be as small as we like. (The denominator is made positive for simplicity i.e. 
multiplying either level of the ratio by minus would simply reverse the numerator
terms without affecting the logic of the proof.) The effect of this is that the range
defined by p and n, which contains (p – n), is always decreasing with ε, or 
algebraically:

p−−n=p+n

Subtracting amounts j and k from p and n respectively (to model unknown 
reductions in the sums of the positive and negative terms) gives us:

(p− j)−−(n−k )=(p+n)−( j+k) (5)

which shows that the range always decreases with ε. So to get (p – n) and 
therefore r below given values we simply reduce the range until it is less than 
the (p – n) target value. Since by definition the range must include zero and (p 
– n), (p – n) will then be less than its target value. Consequently the ratio r can 
be made indefinitely small, which justifies neglecting higher power incremental 
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(i.e. infinitesimal) terms. This process, in which the steady absolute increase or 
(as in this case) decrease of all individual terms overcomes any reversals in the
change of their sum, can be termed inexorable.

What remains is to show that the above line of reasoning is equivalent to the 
limit criterion. Limits are a part of so-called real analysis, a more modern 
version of which is non-standard analysis. One advantage of NSA is that it 
clearly expresses the derivative as the ‘standard part’ of the gradient equation. 
Thus with dx as the increment of x:

f ' (x)=st (
f (x+dx)− f (x)

dx
) (6)

dx, and below dy, are used instead of the customary Δx and Δy because in this 
case dy/dx does itself refer to the finite version of the derivative. The limit 
criterion now requires that:

a limit exists if for every dx2 in |dy2/dx2−f ’(x )| a smaller dx1 can be found 

such that |dy1/dx1−f ’(x )|<|dy2/dx2−f ’(x )|

The ‘smaller error’ offered by a sufficiently smaller dx1 is equivalent to the 
inexorable decrease of (p – n), and this justifies nilpotency. So the above 
statement applies equally to both NSA and calculus with original infinitesimals 
(SIA). This should not be surprising since the nilsquare rule and standard part 
operation have the same ultimate effect, the former is just concerned with 
taking an intermediate limit in a given derivation. (Incidentally, the above syntax
also supports the idea that limit theory actually presupposes a value for the 
derivative f ’(x).) But can we express that action specifically in the language of 
limit theory? Using our previous notation for the constituent terms, the limit 
criterion now requires that:

a limit of zero exists if for every p2 and n2 in |(p₂−n₂)/a| smaller p and n 
can be found such that |(p₁−n ₁)/a|<|( p₂−n₂)/a|

This is what the proof shows for polynomials or functions that can be expressed
in polynomial form; note that these are polynomials in terms of both the variable
and the increment. This includes analytic functions – those which can be 
expressed using convergent power series. The result can be given symbolically
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as (Σ bnεn>1)/(b1ε) → 0; with ε as the increment, b as terms involving an arbitrary 
x value, and → meaning ‘goes as close as desired to [zero]’. This completes the
proof.

In summary, limit theory can be seen as a justification for neglecting nilpotent 
infinitesimal terms. But this immediately raises a question – how can the two 
approaches be in different philosophical camps? Maybe the dichotomy of LEM 
or not-LEM is too simplistic, as the use of LEM itself often is. The philosophy of 
this is discussed later, but for now it should be noted that the device of 
neglecting incremental terms has a simple geometrical interpretation. Recall 
that incremental terms are used if we are doing finite difference calculus and 
allow us to determine the properties of secants. For example, the length of a 
secant from a given point on a curve is a function of the increment i.e. the 
increment implies the length of the secant. The basic logical principle of 
contraposition now states that if there is no discernible increment there can 
also be no discernible secant length. What do we call a line defined on a curve 
by a secant with no discernible length? A tangent!

Addendum 1: The question naturally arises that if the sum of higher power 
incremental terms can be made an indefinitely small proportion of the first 
power incremental term, can we also make the sum of the higher-than-n power 
incremental terms an indefinitely small proportion of the n-or-lower power 
incremental terms? Yes, we can. First we divide both levels of the ratio by εn:

±dεⁿ ⁺ ¹±eεⁿ⁺ ²± ...
± aε±bε ²± ...±cεⁿ

/
εⁿ
εⁿ

=
±dε ±eε ² ± ...

±aε ¹⁻ ⁿ±bε ²⁻ⁿ ± ...±cεⁿ⁻ ⁿ
(7)

Then we note that the numerator can be made indefinitely small by invoking 
inexorable reduction. Also note that the denominator consists of one constant 
and a series of negative power incremental terms. Negative power terms 
increase as their variable decreases, but since they are here part of the 
denominator this inexorably reduces the value of the ratio. Therefore, since 
both levels are changing inexorably with the effect that the ratio is decreasing 
we can say that the numerator is infinitesimal. Note that this idea is the same 
as that found in some older textbooks regarding ‘degrees of smallness’; but 
since a presumably arbitrary increment with its associated terms would remain 
after a higher-than-n nullification this technique cannot be considered as 
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important as the nilsquare rule.

Addendum 2: An example of the reduction of an incremental term only 
producing a better approximation of the tangent after further reductions, can be 
found on the graph of y = 24x3 + 8x2 between -⅓ and ⅓. The standard 
derivative of this is 72x2 + 16x while the finite derivative is 72x2 + 16x + 72εx + 
8ε + 24ε2 (with ε as the increment). Taken from -⅓ the value of the finite 
derivative is 2⅔ with an increment of ⅔, and 0 with an increment of ⅓. Since 
the value of the standard derivative at -⅓ is also 2⅔ we can see that the 
derivative gets worse as the increment decreases from ⅔ to ⅓.

Figure 1: Graphs of y = 24x3 + 8x2

(purple) and y = 8/3 x + 8/9
(orange). The latter is the tangent of
the polynomial at x = -1/3 and also a
secant. The secant for the
increments of 1/6 and 3/6 (y = 2/3 x
+ 2/9, broken orange) is also shown.

Calculus as it Began

Realizing that much of the controversy over the foundations of calculus was 
caused by a misunderstanding allows us to re-evaluate various episodes in the 
history of mathematics – here is a brief attempt to do that.

Calculus as we know it was created in the seventeenth century by Gottfried 
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Leibniz and Isaac Newton and was a consequence of various preceding 
mathematical innovations. In particular the invention of Cartesian coordinates 
(named after Rene Descartes) naturally led to a new focus by mathematicians 
on functions and their graphs; and although this can be done geometrically [3] 
calculus makes it simpler. Descartes simplified things further by advocating that
mathematicians focus on algebraic not mechanical curves [4]; and Pierre de 
Fermat coined the word ‘adequality’ for the relationship between infinitesimals 
and their proximate points. But the immediate precursor to calculus proper was 
quite clearly the work of Isaac Barrow, particularly the idea of the differential (or
‘characteristic’) triangle.

Leibniz was initially more open than Newton about his innovation, saying:

What is best and most convenient about my new (infinitesimal) calculus is that it offers 
truths by a kind of analysis and without any effort of imagination, which often only succeeds
by chance, and that it gives us over Archimedes all the advantages which Vieta and 
Descartes had given us over Apollonius [5].

Leibniz’s notation became standard, but the logical basis of his method was 
criticized. One of his replies was:

For instead of the infinite or the infinitely small, one takes quantities as large, or as small, 
as necessary in order that the error be smaller than the given error, so that one differs from 
Archimedes' style only in the expressions, which are more direct in our method and 
conform more to the art of invention [6].

When Leibniz refers to “Archimedes’ style” he is almost certainly referring to the
Method of Exhaustion (also used by Euclid) not the Method of Mechanical 
Theorems, since the latter had been lost in antiquity and an account of it was 
only rediscovered in 1906. The former method is considered to be equivalent to
limits whereas the latter is considered to be equivalent to infinitesimals. So 
Leibniz is saying that his method is equivalent to limits but is more convenient 
[7], which could easily be said about infinitesimals. So do the dy and dx in his 
notation actually represent infinitesimals? If so then one of his contemporaries 
thought they could be improved on – Bernard Nieuwentijt suggested that terms 
with higher powers of infinitesimal increments should be neglected in 
derivations as they arise. In response Leibniz replied:

it is rather strange to posit that a segment dx is different from zero and at the same time 
that the area of a square with side dx is equal to zero.
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As John L Bell notes [8] Leibniz could be accused of contradiction here since 
the nilsquare property is a consequence of the principle of ‘microlinearity’, 
which Leibniz did accept. (Consider y = x2 around x = 0. If the curve is 
microlinear there must be a small straight segment around zero containing 
small ‘non-zero nilsquare values’.) What we can now say is that he could also 
be accused of contradiction because, as proven here, the nilsquare property is 
entirely compatible with his own conception of limits (his clarification in the 
second quote is equivalent to the nineteenth century definition).

This must be considered one of the great missed opportunities in the history of 
science, because although the use of nilsquare infinitesimals soon became 
standard practice, they were considered informal. This was despite the fact that
they always yielded correct results. The issue came to a head around the year 
1900 when a majority of mathematicians decided to reject such perceived 
informalities; and from then on infinitesimals were subject to a self-imposed 
prohibition by academia (though they were still ‘unofficially’ used in physics). 
This would have been inconceivable if Leibniz had explicitly advocated for their 
use. But why didn’t he?

Probably for the same reason as other mathematicians – a reticence to accept 
ideas that violate or seem to violate the law of excluded middle [9]. A variable 
which by definition is smaller than any value you can state manifestly cannot be
distinct from zero or necessarily equal to zero. Nieuwentijt was not therefore 
saying that the increment’s square is literally zero (simplistically x2 = 0 implies 
that x = 0) so how could it be right to set it to zero? As mentioned before, one 
justification that could be used for nilpotency in the two centuries after Leibniz 
and Newton was microlinearity [10]. But the example given of a linear segment 
on y = x2 around x = 0 implying that dx2 → 0 suggests a more general result. 
Namely that the curves of smooth functions consist everywhere of indefinitely 
small linear segments and that we can use nilpotent infinitesimals to ‘generate’ 
those linear segments. This was the kind of thinking evident in what is 
considered to be the first textbook on differential calculus, published by 
Guillaume de L’Hopital in 1696:

For, as curves are nothing but polygons with an infinity of sides, and are only distinguished 
from each other by the difference of the angles that these infinitely small sides form with 
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each other; only the Analysis of the infinitely small can determine the position of these 
sides and so obtain the curvature which they form, which is to say the tangents of these 
curves [11]

Now though ‘indefinitely’ should be used instead of ‘infinitely’ for the sake of 
convention. One recent commentator summarized the method used in the book
thus:

The basic differential formulas for algebraic functions – sums, products, quotients, powers, 
and roots – are derived by L'Hopital in the customary manner, infinitesimals of higher order 
being neglected [12].

But unfortunately, since neglecting higher order infinitesimals seemed to be an 
approximation, the doubts persisted. One notable attempt to clarify the issue 
was made by Joseph-Louis Lagrange a century later:

A strikingly new treatment of the fundamental conceptions of the calculus is exhibited in 
J.L. Lagrange's [Theory of Analytical Functions], 1797. Not satisfied with Leibniz's infinitely 
small quantities, nor with Euler's presentation of dx as 0, nor with Newton's prime and 
ultimate ratios which are ratios of quantities at the instant when they cease to be quantities,
Lagrange proceeded to search for a new foundation for the calculus in the processes of 
ordinary algebra. Before this time the derivative was seldom used on the European 
Continent; the differential held almost complete sway. It was Lagrange who, avoiding 
infinitesimals, brought the derivative into a supreme position. Likewise, he stressed the 
notion of a function [13].

He consequently introduced the now eponymous Lagrange notation. But 
although this was seemingly part of an attempt to de-emphasize infinitesimals, 
Lagrange later said:

I have kept the ordinary notation of the differential calculus because it fits the system of 
infinitesimals adopted in this treatise. Once the spirit of this system has been grasped well 
and the accuracy of its results established by either geometrical methods or by the 
analytical method of derived functions, the infinitesimal calculus can then be applied as a 
certain and manageable tool to shorten and simplify the demonstrations. It is in this way by 
using the method of indivisibles that the demonstrations of the Ancients are shortened [14].

Yet the controversy was still not over. Toward the end of the nineteenth century
doubts began to re-emerge – and the way mathematicians had explained their 
thought processes was also disputed. Could it really be true that they had not 
genuinely known what they were doing?
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Calculus   U  nder   S  crutiny  

The late nineteenth century witnessed a dispute over the foundations of 
mathematics where previously uncontroversial notions, such as the nature of 
the continuum, were challenged; and by the early twentieth century this had 
cast doubt on calculus. As William Osgood said in 1907:

Thus mathematicians have necessarily discarded the differentials of Leibniz as the 
elements out of which the calculus can be built up, and some are more than doubtful about
the advisability of retaining them in any form… We sometimes hear it said that hardly a 
theorem in our textbooks on the calculus is true as stated there [15].

He does however go on to defend the careful use of infinitesimals for practical 
purposes. What exactly caused this crisis of confidence? Three possibilities are
covered here.

A common narrative is that Augustin Cauchy in the first half of the nineteenth 
century found an alternative to the informality of infinitesimals by clarifying the 
limit concept. This claim must however be questioned since Cauchy seems to 
have been perfectly comfortable using infinitesimals, saying: 

When the successive numerical values of such a variable decrease indefinitely, in such a 
way as to fall below any given number, this variable becomes what we call infinitesimal, or 
an infinitely small quantity. A variable of this kind has zero as its limit [16].

As previously noted, today they would be described as indefinitely small 
quantities – Carl Gauss himself insisted on this distinction [17]. Cauchy goes on
to define infinite numbers in a similar way. But although Cauchy was 
comfortable with infinitesimals he did make use of expressions such as [18]:

f (x₁)−f (x ₀)

x₁−x₀
(8)

which can be used to derive standard calculus in an algebraic fashion without 
an incremental or infinitesimal term [19]. An obvious drawback of this method is
that it is no good for finite difference calculus, but arguably it is also not as 
intuitive as using infinitesimals, and its more overt use of the ratio 0/0 may have
hindered its adoption. Cauchy’s general approach to calculus was however 
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very influential. Austrian mathematician Otto Stolz had this to say about it in 
1881:

Cauchy relied on infinitesimal calculus, abandoning the limits of the method of Lagrange, 
believing that only infinitesimal methods provide the necessary rigor. [The] clarity and 
elegance of its presentation facilitated the widespread and universal adoption of his 
course. Even significant shortcomings [when] found, as time has shown, can be eliminated 
by the adoption of consistent principles based on Cauchy’s arithmetic considerations. A 
few years before Cauchy these same views [were] sometimes substantially more fully 
developed by Bernard Bolzano [20]

Since circa 1907 the initial assertion in this account has clearly contradicted the
‘official’ story of Cauchy’s thought processes, a story which also casts Bolzano 
as one of the progenitors of limit theory. But Stolz, speaking decades before 
the supporters of LEM gained hegemony, would have disagreed with the later 
narrative and casts both mathematicians as trying to develop a rigorous theory 
of calculus based on infinitesimals.

A second possible cause of the crisis was investigations into so-called 
pathological functions. These are functions that could not be analyzed with the 
usual techniques. Henri Poincare had this to say about them in 1899:

Logic sometimes makes monsters. For half a century we have seen a mass of bizarre 
functions which appear to be forced to resemble as little as possible honest functions 
which serve some purpose… Indeed, from the point of view of logic, these strange 
functions are the most general; on the other hand those which one meets without 
searching for them, and which follow simple laws, appear as a particular case which does 
not amount to more than a small corner… In former times when one invented a new 
function it was for a practical purpose; today one invents them purposely to show up 
defects in the reasoning of our fathers and one will deduce from them only that [21].

The most well known of these is the Weierstrass function (introduced by Karl 
Weierstrass in 1872) which is continuous but not differentiable. Infinitesimals, 
suited as they are to polynomials, would have seemed inadequate in this new 
terrain; and so limits, being more general, would have gained favor. But 
unfortunately Weierstrass’ epsilon-delta limit criterion (which was essentially the
same as that of Leibniz) began to take on a more exclusionary role. Since this 
change was seen (by those advocating it) as a continuation of Cauchy’s 
approach there may have been a temptation to ‘backdate’ the new philosophy 
so as to imbue it with more authenticity [22].
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The third possibility is that the crisis was a side effect of the introduction of 
Georg Cantor’s theory of sets and cardinal (i.e. actual infinite or transfinite) 
numbers beginning in 1874 (motivated by his take on ‘points’ on the number 
line). Cantor initially justified his thinking by invoking the so-called Axiom of 
Archimedes. This axiom states that if we have two positive numbers a and b for
which a < b then there exists a number n such that na > b. It could be argued 
that this axiom precludes both infinitesimal and infinite numbers, but Cantor 
seems initially to have ignored the second possibility. Later though (after 1883) 
he sought to base cardinal numbers on his so-called well-ordering principle; 
and in 1908 after much dispute Ernst Zermelo introduced the Axiom of Choice 
(AC) which can be used to justify the well-ordering principle, but also implies 
LEM for the continuum. Within this framework then original infinitesimals had to 
be disallowed; indeed Cantor seems to have always assumed that this was the 
case and had conducted a long and angry anti-infinitesimal campaign, calling 
them the "infinitesimal Cholera bacillus of mathematics". Meanwhile AC was 
proving useful to mathematicians of the era, although this may have only been 
because more time was needed to develop a better approach. For example, in 
1942 Paul Bernays introduced the so-called Axiom of Dependent Choice, which
apparently can be used to develop most of real analysis while not implying LEM
for the continuum. Serious drawbacks to AC also emerged. For example, it 
implies results such as the Banach-Tarski paradox (1924) which, put simply, 
states that a sphere can be decomposed into a finite number of pieces which 
can then be assembled into two spheres each identical to the original. It could 
be argued that Cantor's philosophy should have been sidelined after this 
revelation (since it is not actually relevant to any other branch of natural 
philosophy) and in 1925 Hermann Weyl advocated this:

Mathematics attains with Brouwer the highest intuitive clarity; his doctrine is idealism in 
mathematics thought through to the end. But with pain the mathematician sees the larger 
part of his towering theories fall apart [23].

Weyl is here saying that an alternative philosophy (the intuitionism of Brouwer, 

see refs 2 and 37) clarifies the foundations of mathematical analysis better than
the philosophy of formalism, which by then had fully incorporated Cantor’s 
work; but that if we embrace it some previously obtained results have to be 
abandoned so as to preclude contradiction. Some mathematicians did take this 
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advice, and in time analysis was reconstructed on firmer ground, culminating in 
the emergence of SIA in the 1970s. But by then a large majority of 
mathematicians and mathematics departments had embraced AC, together 
with all of its consequences.

C  onclusion  

Whatever the reason, the use of infinitesimals came to be in effect discontinued
within academic mathematics soon after 1900, and it became obligatory to refer
to limits in relevant proofs. It was assumed that limits are without qualification 
compatible with LEM. But what would that really mean? Why should LEM even 
be an appropriate condition for calculus? It is worth noting that while some 
types of limit in mathematics consist of terms to be summed in theory 
simultaneously (such as decimal numbers), expressions in calculus are 
evaluated in theory repeatedly – each iteration is an ‘improved’ version of the 
previous calculation and is independent of it. In other words, calculus is not 
about infinite series (although these are often utilized), it is about indefinite 
processes. But what ‘improved’ means here must be clarified. If we are trying to
calculate the gradient of a tangent of a smooth curve as a limiting value then 
we are not guaranteed continual improvement with a decreasing incremental 
term. Instead what we are guaranteed is inexorable improvement. This ability to
posit, but not specify the value of, an increment with a desired property (namely
that it yields an error less than an arbitrary value) justifies the use of 
infinitesimals in calculus and explains what limits are actually limits of [24]. The 
question then becomes – does LEM prohibit us from subsequently neglecting 
those small inappreciable values as it does those which are finite?

The answer should depend on exactly how the condition is phrased. One 
condition that cannot be violated it that of non-contradiction – a number cannot 
be both equal and unequal to another number. This would imply that the 
answer is No – neglecting infinitesimals is not prohibited because they are 
indistinguishable from their proximate values, equality is not the issue. Some 
mathematicians though have extrapolated from this to assert that even though 
we do not in practice distinguish infinitesimals, ‘in theory’ we could and that 
therefore the answer is Yes – we must prohibit the technique of neglecting 
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them. The problem here is the use of the word ‘therefore’. We could just as 
easily say that since infinitesimals are indefinitely small we are allowed to 
neglect them, provided we can cancel any remaining infinitesimals. This unique
capability of calculus, together with regular algebra, gives us a widely 
applicable set of tools for obtaining useful theorems.

The important point is that apart from when we are invoking the special 
properties of infinitesimals the normal rules of algebra apply, so we do not have
to treat finite and standard calculus as radically different. As Felix Klein put it:

I should like to remind you, first of all, that the bond which [Brook] Taylor established 
between difference calculus and differential calculus held for a long time. These two 
branches always went hand in hand, still in the analytical developments of [Leonhard] 
Euler, and the formulas of differential calculus appeared as limiting cases of elementary 
relations that occur in the difference calculus [25].

This connection is most apparent when physicists model phenomena using 
finite differences – the programs approximate equations with very small (but not
infinitesimal) incremental terms to any required precision [26]. Not 
coincidentally physicists and engineers are largely responsible for ‘unofficially’ 
maintaining some of the original techniques of standard calculus throughout the
twentieth century, in spite of the unwarranted accusation of lack of rigor from 
academic mathematics. One example of this is perturbation theory, which 
explicitly introduces infinitesimal increments to equations describing physical 
phenomena in order to study continuous change (more generally this technique
can be called ‘microadditivity’). Unfortunately though, some of the more 
fundamental original techniques (which of course includes basic proofs) were 
seldom to be found in standard textbooks. Instead authors employed a 
sometimes awkward mixture of truncated infinitesimal algebra while also 
referencing the logic of limits [27]. This self-imposed censorship was only 
alleviated when the internet allowed alternative viewpoints to be widely 
expressed.

So what should be done about this situation? Perhaps, instead of dwelling on 
what was at the very least a pedagogical disaster, we should just correct it. 
Acknowledging that infinitesimals and limits are two aspects of the same thing, 
that they are both aspects of dealing with indefinite precision, would be a good 
place to start.
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Continuation

Reply to Critique – Was Change Needed?

There have been no criticisms of the proof itself, the stating of which was the 
main purpose of the paper, but there was a criticism of one seeming implication
of the narrative. The idea that before the twentieth century there was a 
"rigorous theory of infinitesimals" and that the advent of limit theory did not 
therefore represent any improvement in our understanding of calculus was 
challenged. This criticism is not wrong but is misleading – because it may not 
have been clear that such a theory was necessary and because 
mathematicians very nearly did have such a theory. Taking these two 
arguments in turn:

1. Before the twentieth century mathematicians used the techniques of 
neglecting higher order infinitesimals and also that of what would become
known as taking the standard part. But as explained in Reference 27 
(which was in Version 1 of the paper) these are in effect equivalent. So 
until the dispute over foundations restricted their options there would 
have been no reason for mathematicians to object to one technique while
making use of the other, and whereas the former requires some theory 
the latter can be justified quite simply – if the infinitesimals of an 
expression can be seen as the subject of a polynomial then simple 
graphing shows that the sum of the terms near zero approaches zero. So 
to many mathematicians it may not have been clear that a "rigorous 
theory of infinitesimals" was actually needed.

2. Before formal limit theory was applied to calculus mathematicians mostly 
assumed that the subject was based on the concept of microlinearity. 
That approach was outlined by L’Hopital (see ref 11) and had been 
employed by, for example, Fermat in his technique of ‘adequality’. This 
equates the values of a function before and after increasing it 
infinitesimally – if the curve being analyzed has a gradient of zero for a 
given x-value the points could be said to lie on a linear and horizontal 
segment of the curve. From this perspective tangents do not touch the 

17



curve at a point, rather they coincide with the curve along an infinitesimal 
straight line. And this idea can be used in another simple proof of the so-
called definition of the derivative. If two linear equations are formed with 
the same parameters but one with y1 and x, while the other has y2 and (x 
+ ε), then we can easily show that the derivative is the slope of the line.

Is this a rigorous theory or a tautology? That line could of course be a secant or
a tangent of the function – to be a tangent we would have to neglect and cancel
the infinitesimal terms, and the nilsquare rule allows us to do it in that order. In 
the process it also makes the ‘error’ (i.e. the sum of the terms which cannot be 
standardized by cancellation near the end) indefinitely small by making the 
higher order terms indefinitely small as a proportion of any first order term. This 
is reminiscent of first order Taylor ‘approximations’ in which the relationship 
between microlinearity and the nilsquare rule is very clear [28].

So what good does limit theory offer then? Acknowledging ‘linearization’ as 
above means that we can retain the term ‘taking the limit’ because applying the 
nilsquare rule is taking a limit – the limit at which a curve ‘becomes’ a line. The 
ratio of terms neglected to the term kept in order to do that can be as low as we
like, but ideally this should have been demonstrated. So the advocates of limit 
theory did correctly diagnose a minor problem, they just never bothered to 
come up with a solution to it. Instead they strove to create “a purely arithmetical
and perfectly rigorous foundation for the principles of infinitesimal analysis” [29].
The term sometimes used for the mathematicians involved in that movement is 
‘arithmetizers’, but it actually makes more sense to identify them with the 
formalist school. As David Hilbert, the chief formalist, said in 1926: “No one 
shall expel us from the paradise which Cantor has created for us”. Formalism is
normally considered to have suffered a fatal blow with the work of Gödel, but 
arguably it lingers on in the archaic insistence on the primacy of limits in 
calculus.

Elaboration – Alternative Algebras for Calculus

In the section Calculus Under Scrutiny I give an expression (Formula 8) used 
by Cauchy which "can be used to derive standard calculus in an algebraic 
fashion without an incremental or infinitesimal term." This does not however 
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seem to have been done by Cauchy himself but mostly in the early twentieth 
century by Greek mathematician Constantin Carathéodory. In Reference 19 a 
proof of the power rule was given that used this method, and the other basic 
theorems of calculus can be derived from the same starting point. In his paper 
The Derivative á la Carathéodory [30] author Stephen Kuhn introduces his 
method as follows:

Augustin-Louis Cauchy would be pleased. Each year we introduce our elementary analysis
students to the notion of the derivative essentially as he gave it to us in 1823. But there is 
another, less well known, characterization of the derivative which appears in the last 
textbook [31] written by Constantin Carathéodory (1873-1950). This formulation is not only 
elegant but useful… The proofs of many important theorems… become significantly 
easier… [and later he continues] After the usual definitions and theorems about limits and 
continuity are presented in a standard elementary real analysis course, the definition of the
derivative, essentially as given to us by Cauchy, is given for functions of a single variable. 
Typically it is presented in both the following forms…

He then gives the formulas given here as Formula 6 (but with a limit prefix 
instead of a standard part function) and Formula 8 (but including a subject). It 
should however be noted that: firstly, Kuhn fails to mention that Cauchy initially 
equates his derivative definition to Δy/Δx (he thus obscures the fact that 
standard calculus ‘follows on’ from finite difference calculus); and secondly, that
since the main proof in this essay begins with an utterly trivial proof of Taylor’s 
formula it is far from clear why it should only be stated “After the usual 
definitions and theorems… are presented in a standard elementary real 
analysis course”.

Kuhn is however correct when he says that Carathéodory’s method is “less well
known”, and consequently it is not uncommon for students to stumble upon it 
while experimenting. As one anonymous internet contributor put it (in January 
2019): “The limit actually does do something!” before giving the following proof 
of the derivative of y = x2:

h(a)=10 a2

h(b)=10 b2

h(b)−h(a)
b−a

=
10 (b2

−a2
)

b−a
=

10(b+a)(b−a)
b−a

=10 (b+a)
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They then say that as b approaches the limit of a, 10(b+a) = 10(2a). Another 
contributor independently used this method (in December 2015) to derive the 

above result, the generalized power rule (as in ref 19), the addition rule, the 
product rule, and the chain rule as shown here [32]:

f (g(b))−f (g(a))

b−a
=

f (g(b))−f (g(a))
g(b)−g(a)

×
g(b)−g(a)

b−a
(9)

The author, who only gives a pseudonym, presents their proofs in a different 
way to Carathéodory but the two do start working from the same premise, and 
arguably the above version is simpler. But as alluded to in Version 1 this 
method is (to quote Kuhn again) ”less practical from a computational point of 
view” since to do numerical analysis and utilize various algebraic techniques 
you do need a variable for the increment. It is also worth noting that the 
method’s apparent status as the algebraic manifestation of limit theory could 
also be claimed by the method of ‘tangent cones’ as described here by another 
online mathematician [33]:

In calculus classes it is sometimes said that the tangent line to a curve at a point is the line 
that we get by "zooming in" on that point with an infinitely powerful microscope. This 
explanation never really translates into a formal definition… I seem to have found a way to 
obtain tangent lines (and more) by taking "zooming in" seriously… Take the curve y = x(x −
1)(x + 1). I want to find an equation for the tangent line to this curve at the origin. So I zoom
in on the origin with a microscope of magnification power c (i.e. I stretch both vertically and 
horizontally by a factor of c) to obtain

y
c
=

x
c
(
x
c
−1)(

x
c
+1) (10)

y=x (
x
c
−1)(

x
c
+1)

y=−x

The last line is obtained by “letting my magnification power go to infinity”; the 
result obtained is the equation of the tangent, not its gradient. He ends by 
asking “Do any books take this approach when developing the derivative?” 
They do, but as far as I can tell the above presentation is simpler than the usual
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textbook approach.

It should be apparent by now that there are several different algebraic ways of 
doing calculus. The main lessons I draw from the comparison of them given 
here are this: algebra and analysis are not distinct branches of mathematics, 
and that algebraic thinking is what characterizes mathematics itself. The 
algebraic versions of calculus should not contradict each other and, if treated 
carefully, can be used however we like.

Related Matter – Ratios of Differentials

Whether infinitesimals are used explicitly or are represented merely by the 
difference between two values we should remember that it is by subjecting 
them to indefinite (and inexorable) reduction that we get calculus to work. There
was nothing arbitrary about Barrow’s choice of the word ‘differential’ for his 
increments, or of Leibniz’s decision to adopt the term in his work. We should 
therefore be able to understand other aspects of Leibniz’s notation by referring 
back to such basic concepts; and as a corollary we might expect the formalists, 
who were dismissive of the Leibniz notation, to run into trouble with it. Or, 
considering the pervasive influence of limit theory on twentieth century calculus 
teaching, maybe regular people have got into trouble after trying to find 
coherent explanations of the topic. I quote alleged mathematician Jonathan 
Bartlett:

However, when it came to the second derivative, I realized that not only is the notation 
unintuitive, there is literally no explanation for it in any textbook I could find… [the notation 
is of course d2y/dx2] I looked through 20 (no kidding!) textbooks to find an explanation for 
why the notation was the way that it was. Additionally, I found out that the notation itself is 
problematic. Although it is written as a fraction, the numerator and denominator cannot be 
separated without causing math errors… I would try to derive the notation myself. Well, 
when I tried to derive it directly, it turns out that the notation is simply wrong… I would 
argue that a fraction that can't be treated like a fraction is wrong [34].

This is symptomatic of a near-total philosophical train wreck, and it is entirely 
the fault of the formalists and their attempt to prohibit the various algebraic 
approaches to calculus. Admittedly, the author does have a motive to find fault 
(see ref 34) but he does have a point when he says that textbooks do not 
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explain the notation. The reader should not be surprised to hear that this author
has no objection to differentials being used in fractions. Furthermore, I worked 
out an explanation for Leibniz’s second derivative notation in 2016, well before 
this essay was written:

The d in the Leibniz notation means 'the difference between that value and the previous 
one.' It is not a factor, hence:

dy
dx

=
dy1

dx
=

y1− y0

dx

Notice that we have to be careful with our subscripts – the first y value is subscripted zero 
because it corresponds to dx = 0 ([by definition] dx is just arbitrarily small). So for the 
second derivative we have:

(
dy2

dx
−

dy1

dx
)/dx=

dy2−dy1

dx2 =
d(dy2)

dx2 =
d2 y
dx2

(11)

Notice that the superscript means 'apply the function twice' not square it! Seeing if this 
applies to higher derivatives we have:

(
d2 y 3

dx2 −
d2 y2

dx2 )/dx=
d2 y3−d2 y2

dx3 =
d(d2 y3)

dx3 =
d3 y
dx3

(This was posted on https://math.stackexchange.com at the time but was 
subsequently deleted by the moderators.) The easiest way to visualize how this
notation works is to sketch adjacent differential triangles on a graph; the 
connection to finite differences could not be more obvious. After criticizing this 
notation Bartlett goes on to invent his own – for the second derivative this 
somehow consists of the conventional notation minus a complex ratio of 
differentials. To state the obvious, I consider such expressions invalid. The 
ratios in the conventional differential notation are genuine ratios, and 
considering them as such facilitates elegant arguments.

One example will be given here. For y = ex we have dy/dx = y. The inverse 
function of ex (i.e. ln|x|) is its reflection in y = x and obviously ln|x| has the same 
relationship with x as ex has with y. Therefore dx/d(ln|x|) = x and d(ln|x|)/dx = 

1/x. By FTC (as in ref 12) we then have ln|x| = ∫ 1/x + c where ∫ signifies the 
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integral. This proof may seem informal but we can achieve the same result by 
using the inverse function rule. If f(x) is an invertible function we have x = g(f(x))
= f(g(x):

d g(x)
dx

=
1

d f (g)/d g(x)
(12)

This is a direct translation of the rule from the Lagrange to the Leibniz notation 
as done by the author – external sources gave inadequate representations. 
Note that the rule, as given above, can be derived using simple algebra (as was
done for Formula 1) starting with the definition of inversion. The derivative of ln|
x| can easily be found using the rule and is left as an exercise. The above 
example is historically important because mathematicians struggled for many 
years with the ‘quadrature of the hyperbola’, or as we would say, integrating the
reciprocal [35]. It is also an example of a difficult proof being simplified by a 
clever symmetry argument, an occurence not uncommon in mathematics.

Figure 2: Graphs of y = ex (blue), y
= ln(x) (red), and y = 1/x (orange).
The first two are reflections in y = 
x, while the integral of 1/x is ln|x| + 
c.

The absence of any ‘official’ explanation of the Leibniz notation for higher 
derivatives (although there is now an attempted explanation on Wikipedia) is 
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just one example of the obfuscation wrought by the formalists’ insistence that 
limit theory is the one true lens through which to view calculus [36]. This 
doctrine downplays the close connection between standard and finite difference
calculus, suppresses any explanations of calculus that (to their mind) seem too 
algebraic, and ignores versions of analysis which do not apply LEM to the 
continuum. Mathematicians who could not accept this approach embraced the 
philosophy of constructivism, which emerged in the early twentieth century, 
largely in response to formalism. Physicists meanwhile have mostly ignored the
controversy [37], although various intuitive derivations were suppressed due to 
self-censorship. This stance is possible partly because the predominant method
for deriving formulae in physics is to use variational principles, the most 
developed form of which is the Calculus of Variations (which employs the Euler-
Lagrange equation). This largely superseded Newtonian mechanics, in which 
microadditivity is more explicit; the two methodologies are however equivalent 
[38]. Computer scientists meanwhile seemingly employ nilsquare infinitesimals 
as a matter of routine [39].

To conclude, there is a profound philosophical rift between most 
mathematicians and the rest of science, which obviously needs to be dealt with.
The time has come for a thorough re-evalutation of the influence of the 
formalists – we must reject arguments claiming that calculus had previously 
been defective and then subsequently became better. The truth is the exact 
opposite of that.
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example y = n1/x / (1 + n1/x) where n is a constant has a discontinuity at zero.

(22) p13 – Ten Misconceptions From the History of Analysis and Their 
Debunking, https://arxiv.org/abs/1202.4153, Piotr B Laszczyk, Mikhail G Katz, 
and David Sherry, 2012.

(23) p14 – Philosophy of Mathematics and Science, Hermann Weyl, 1925. 
Quoted in Hermann Weyl's Intuitionistic Mathematics, The Bulletin of 
Symbolic Logic, h  ttps://www.jstor.org/stable/421038  , Dirk Van Dalen, 1995, 
p145-169 (Volume 1, Number 2). Not all mathematicians were willing to join 
Weyl in making that sacrifice though; instead they attempted to ‘get around’ the
contradictions of Cantorianism (which had by then been fully subsumed into the
broader philosophy of formalism):

For instance, about forty-five years ago, Whitehead and [Bertrand] Russell seemed to have
all but succeeded in reducing mathematics to an absolute logic; but within a decade of the 
publication of their Principia Mathematica, Ramsey and Chwistek exposed a number of 
contradictions in the Principia logic. Unfortunately, neither Ramsey's application of 
Wittgenstein's ideas, nor Chwistek's theory of [misnamed?] constructive types, both of 
which were designed to save the Principia system from shipwreck, had any better luck. So 
mathematicians began to devise newer and still more ponderous logics. Such were the 
logics of Curry and Church which, in their turn, were proved inconsistent by Kleene and 
Rosser. Of the five different systems of logics enumerated by Lewis and Langford, in their 
Symbolic Logic, not one was found by the authors sufficiently 'precise' to embody 
'acceptable principles of deduction.'

Mathematical Ideas - THEIR NATURE AND USE, Jagjit Singh, 1961, p288. In 
contrast to this, the intuitionistic (and later ‘constructive’) remedy for the 
contradictions was to identify the troublesome axiom and not admit it as 
generally applicable. To put it another way – the reason the formalists were 
obssessed with axiomatic consistency was that subconsciously they knew that 
their own belief system was logically toxic.

30

https://www.jstor.org/stable/421038
https://www.jstor.org/stable/421038
https://arxiv.org/abs/1202.4153
https://arxiv.org/abs/1502.06942
https://arxiv.org/abs/1502.06942
https://arxiv.org/


(24) p15 As Lazare Carnot wrote:

We will call every quantity, which is considered as continually decreasing (so that it may be
made as small as we please, without being at the same time obliged to make those 
quantities vary the ratio of which it is our object to determine), an infinitely small quantity… 
You ask me what infinitesimal quantities mean? I declare to you that I never by that 
expression mean metaphysical and abstract existences, as this abridged name seems to 
imply; but real, arbitrary quantities, capable of becoming as small as I wish, without being 
compelled at the same time to make those quantities vary whose ratio it was my intention 
to discover.

Reflections on the Metaphysical Principles of the Infinitesimal Analysis, 
Lazare Carnot, 1832, p17. Quoted in The Continuous and the Infinitesimal, 
John L Bell, 2005, p105.

(25) p16 – Elementary Mathematics from an Advanced Standpoint, Felix 
Klein, 1908, p234 (Third Edition 1924). A good example of the close connection
between finite and standard calculus is the proof of the chain rule – it is the 
same in both branches. If f(x) = g(h(x)) then:

                               f (x+Δx)=g[h(x+Δx)]
                                              =g [h(x)+Δxh ' (x)]
                                              =g (h(x))+Δxh ' (x)g '(h(x))

f (x+Δx)− f (x)
Δx

=h '(x)g ' (h(x))

                f '(x)=h '(x)g ' (h(x)) (15)

Notice that Δx could simply be replaced with dx in this proof. In the Leibniz 
notation the end result would read:

df
dx

=
dh
dx

⋅
dg (h)
dh

The second RHS numerator is not stated as df as is normally done (see 
https://www.physicsforums.com/insights/demystifying-chain-rule-calculus/, 
PeroK, 2018). The reader may verify this notation by taking two arbitrary 
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functions, compounding them (if possible), and then taking the derivative of the 
result. It should be the same as the derivative obtained by applying the chain 
rule itself. Also note that even though the proof of the chain rule is the same in 
both branches of calculus the final derivatives produced are different, because 
the power rule only applies to one branch. For further verification of this or any 
other theorem of calculus the reader can experiment with finite difference 
examples by graphing functions, substituting values for x and Δx, and then 
measuring predicted distances and/or angles. This is easier with finite 
differences because determining the intersection of a line with a curve can be 
more exact than drawing a tangent by sight. As Leibniz put it: “the whole matter
can be always referred back to assignable quantities.”

(26) p16 This type of finite precision is subtly different from the indefinite 
precision of standard calculus; and both are qualitatively different from practical
precision, which is determined by necessity or the resolution of a particular 
device (of course no physical device can attain indefinite precision). Also note 
that finite difference calculus is closely related to so-called finite element 
analysis; a comparison of the two methods is however beyond the scope of this
essay. This field has become increasingly important as computing power has 
increased:

When calculus finally gets taught, its limitations are rarely discussed, and when 
encountered, are often dismissed as special cases. The myth of calculus' power 
propagates into our research and industrial organizations and is responsible for 
considerable loss of time in fruitless attempts to apply it to real-life scientific or engineering 
problems... we can solve only a handful of very special nonlinear differential equations... 
That leaves out the vast majority of all interesting problems... Almost as a rule, we submit 
our closed-form solutions... to the computer for evaluation, plotting or some other 
transformation. But we must also recognize that modern computers are capable of doing a 
great deal more than that. They can accept and then apply the fundamental laws of physics
to a variety of problems... In all these impressive successes no closed-form solutions are 
being used. We should therefore teach our future generations not to strive for closed-form 
solutions at all, but to accept the fact that we are unable to produce them for the majority of
useful cases. As an alternative, we would teach children at an early age how to pose the 
problem to the computer... We teach them how to cast the problem into the form 
understood by the computer... how to express the problem in finite difference form

A Viewpoint on Calculus, Hewlett-Packard Journal, 
https://www.hpmemoryproject.org/  timeline/zvonko_fazarinc/hpj1987_03_01.ht  m  
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Zvonko Fazarinc, 1987, (Volume 38, Number 3). Indeed, any calculus problem 
can be set out in finite difference form, and a classic calculus problem for 
students concerns falling ladders. Here is a finite difference solution to one 
such problem by this author (from 2013):

This problem can be solved 'numerically' without resorting to other methods. First we have:

w2
+g2

=L2

(w+ f )2
+(g+ p)2

=L2
(16)

where w is the wall, g is the ground, L is the ladder... f is the fall rate and p is the pull rate. 
Note that the units of f and p are metres – time is implicit. Also note that we do not 
presume that the fall rate is negative – it should come out that way. Equating, canceling 
[sic] common terms and solving the quadratic in f yields:

f=√(w2
−2 gp−p2

)– w

Now we can calculate a series of increasingly accurate approximations of the fall rate if the 
pull rate is 0.4m/s. Here is a Python function that does this:

def fallrate(wall, ground, pullrate):
for i in [2**n for n in range(15)]:

print(i * ((wall**2 - 2 * ground * (pullrate/i) - (pullrate/i)**2)**.5 – wall) )
input("\nEnter to exit. ")

fallrate(4, 3, 0.4)

Note that if we halve the distance we use to calculate the pull rate we will get a rate for half
the distance. We must therefore double the result for the purpose of comparison – hence 
the i * etc at the start of the approximation formula. The fall rate seems to converge on -
0.3m/s. This approach can be seen as a type of calculus... and it agrees with the result 
given by Elf worked out using conventional methods [which, as Fazarinc says, cannot be 
used for many calculus problems].

Playing with finite difference simulations as in this example is a great way to 
‘get a feel’ for how calculus works, but note that the word ‘approximation’ as 
used is a bit of a misnomer since we can compare the final result with that 
obtained using standard calculus, and they agree exactly (it may be more apt 
for problems where such a comparison cannot be made). Also note that these 
cases are qualitively different from the approximations mentioned in Reference 
28 where the ‘working point’ is absolutely accurate, but the linear projections 
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made from it are approximate.

(27) p16 Here is an example of this from a popular textbook:

General Rule for Differentiation

First Step: In the function replace x by x + Δx, giving a new value of the function, y + Δy.

Second Step: Subtract the given value of the function from the new value in order to find 
Δy (the increment of the function) by Δx (the increment of the independent variable).

Third Step: Divide the remainder Δy (the increment of the function) by Δx (the increment of
the independent variable).

Fourth Step: Find the limit of this quotient, when Δx (the increment of the independent 
variable) varies and approaches zero. This is the derivative required.

The student should become thoroughly familiar with this rule by applying the process to a 
large number of examples.

Elements of the Differential and Integral Calculus, William A Granville, 
1904, p29 (1911 edition). The fourth step was later emulated by the standard 
part operation in NSA, while the third step is the inevitable cancellation by the 
increment. Since the only incremental terms remaining by step four would be 
those that were previously a higher power (than the first) the nilsquare rule 
allows us to reverse the order of the last two steps, and replaces taking the final
limit with neglecting higher power infinitesimal terms. Also note that Granville 
uses Δx and Δy rather than dx and dy, thus making the point that the 
differentials and infinitesimals of calculus are extenuations of finite variables 
and can be treated accordingly.

(28) p18 If a scientist is interested in a small but finite linear segment then the 
methodology for an infinitesimal segment may be applicable:

If ε is sufficiently tiny (“sufficiently” is ambiguous and depends on how much accuracy 
some scientist is interested in), higher powers of ε decrease rapidly in magnitude and so 
higher-order terms in Eq. (6) can often be ignored as negligible, leading to a simple local 
approximation.

Tutorial on obtaining Taylor Series Approximations without 
differentiation, http://webhome.phy.duke.edu/~hsg/415/taylor-series-
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tutorial.pdf, Henry Greenside, 2018. The Taylor series can be written:

y= f (x)+
f '(x)

1!
ε+

f ' ' (x)
2 !

ε2
+

f ' ' ' (x)
3!

ε3
+... (17)

After taking the nilsquare limit the series takes the form of a linear equation i.e. 
the Taylor formula. With ε = 0 it yields the point (x, f(x)) but as ε increases or 
decreases a straight line is drawn with slope f’(x) i.e. the tangent. To quote one 
anonymous internet commentator:

That's what makes it so useful to engineers. You are able to break down a rather complex 
function (i.e. non-linear) into a linear function around some "working point" x of your choice.
This way things become significantly easier to calculate while staying reasonably accurate 
(as long as you don't move too far from your working point).

This can be seen as an example of controlled informality based on a clear 
understanding of the subject. One danger of the formalists’ practice of 
designating all uses of the nilsquare rule as informal, even though its use is 
unavoidable, is that some will adopt arbitrary mathematical rules simply 
because they ‘feel right’ (as witnessed by this author). The nilsquare-limit 
theorem can therefore be seen as one tool for deciding which supposed 
informalities are correct and which are not.

(29) p18 – Continuous and Irrational Numbers, Richard Dedekind, 1872. 
Quoted in Logicism and Neologicism, https  ://plato.stanford.edu/  entries/  
logicism/, Neil Tennant, 2013, (revised 2017).

(30) p19 – The Derivative á la Carathéodory, The American Mathematical 
Monthly, Stephen Kuhn, 1991, p40-44 (Volume 98, Number 1).

(31) p19 – Calculus of Variations and Partial Differential Equations of First
Order, Constantin Carathéodory, 1935.

(32) p20 – Revisited Calculus, https://  nbviewer.jupyter.org/  github/  warsus/  
calculus/  blob/master/  calculus.ipynb  , 2015.

(33) p20 – Taking “Zooming in on a Point of a Graph” Seriously, 
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https://mathoverflow.net/questions/77175/, Steven Gubkin, 2011.

(34) p21 – Is Standard Calculus Notation Wrong? 
https://uncommondescent.com/intelligent-design/is-standard-calculus-notation-
wrong/, Jonathan Bartlett, 2019. The full paper is Extending the Algebraic 
Manipulability of Differentials, https://arxiv.org/pdf/1801.09553.pdf, Jonathan 
Bartlett and Asatur Khurshudyan, 2018. Bartlett could be accused of having an 
ulterior motive for his critique – he is part of the ‘intelligent design’ movement 
and implies that mathematics being wrong would cast doubt on other fields 
such as biology. In contrast, this author has no objection to biological evolution 
(except the sheer inefficiency of it) and does not see any need for other 
theories regarding the origin of living creatures. But by eschewing good 
explanations of mathematical concepts the formalists have left an ‘open goal’ 
for people who do want to attack natural philosophy.

(35) p23 As author Eli Maor puts it:

The problem of finding the area of a closed planar shape is known as quadrature, or 
squaring… Among the shapes that [had] stubbornly resisted all attempts at squaring was 
the hyperbola… As we recall, Archimedes tried unsuccessfully to square the hyperbola. 
When the method of indivisibles was developed early in the seventeenth century, 
mathematicians renewed their attempts to achieve this goal. [Maor recounts subsequent 
developments, such as Fermat’s technique for finding the quadrature of simple polynomials
– which later became the power rule of calculus.] Alas, there was one snag. Fermat's 
formula failed for the one curve from which the entire family derives its name: the 
hyperbola y = 1/x = x-1. This is because for n = - 1, the denominator n + 1 in [the early 
power rule] becomes 0… It remained for one of Fermat's lesser known contemporaries 
[Gregoire de Saint-Vincent] to solve the unyielding exceptional case… Thus the quadrature
of the hyperbola was finally accomplished, some two thousand years after the Greeks had 
first tackled the problem.

e: the Story of a Number, Eli Maor, 1994 (chapter 7). Saint-Vincent’s method 
was complicated – it involved indefinitely approximating the area under the 
hyperbola with equal rectangles. And of course soon after this result calculus 
as we know it was invented. The massively simplified procedure given in the 
text for integrating the reciprocal is testament to the efficacy of Leibniz’s 
notation, and demolishes the argument that derivatives in his notation cannot 
be considered to be ratios of differentials. This author has not come across any 
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cases (that bear scrutiny) of the Leibniz notation causing contradiction, and 
sees no problem with its continued usage, especially in conjunction with the 
Lagrange notation.

(36) p24 Formalism was brought to bear on mathematical analysis by the 
publication of a number of books around the year 1900:

Forsyth also seems to have played a part in stimulating the British interest in, and 
awareness of, continental work in analysis at the turn of the century… it was Forsyth's 
Theory of Functions of a Complex Variable (1893), which, according to Edmund Whittaker, 
"had a greater influence on British mathematics than any work since Newton's Principia"… 
[The book] was soon surpassed in its standard of rigor by Whittaker's Course of Modern 
Analysis (1902) and Hobson's Theory of Functions of a Real Variable (1907). But it was 
Hardy's Course in Pure Mathematics (1908)… which really marked the turning point in 
British university-level mathematical education. From then on, analysis would be a 
fundamental component.

The rise of British analysis in the early 20th century: the role of G.H. 
Hardy and the London Mathematical Society, Historia Mathematica, Adrian 
C Rice and Robin J Wilson, 2003, p173-194 (Volume 30, Issue 2). After real 
analysis had been smuggled in on the back of complex analysis the British 
mathematicians took to promoting the subject with the zealotry of a convert, 
which of course meant crushing all opposition; and this campaign influenced 
the entire Anglosphere. It was Bertrand Russell who became the movement’s 
chief proselytizer saying in 1938 “Infinitesimals… must be regarded as 
unnecessary, erroneous and self-contradictory.” Principles of Mathematics, 
Bertrand Russell, 1938, p345 (second edition). Apparently though, Russell 
never actually checked to see if infinitesimals were compatible with limit theory 
– and no one seems to have asked him why he failed to do that.

(37) p24 This has had some interesting consequences, for example, the near 
rediscovery of a precursor to constructivism, namely the intuitionism of LEJ 
Brouwer, by physicist Nicolas Gisin:

The above simple observation has the following important consequence: after the first bits, 
the next bits of almost all real numbers are random, they don’t follow any structure. These 
bits are as random as the outcome of quantum measurements (on half a singlet, let’s say), 
i.e. they are as random as possible. Accordingly, to name them “real number” is seriously 
confusing. A better terminology would be to call them “random numbers”. Unfortunately, 
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Descartes named them “real” to contrast them with the complex numbers, those numbers 
that include the square root of -1, traditionally denoted i. Hence: Mathematical real 
numbers are physical random numbers. [bold in original] If at school we had learned to 
name the so-called real numbers, using the more appropriate terminology of random 
numbers, we would be much less inclined to believe that they are at the basis of 
determinism.

Indeterminism in Physics, Classical Chaos and Bohmian Mechanics. Are 
Real Numbers Really Real? https://arxiv.org/abs/1803.06824v1, Nicolas Gisin,
2018 (Version 1). Now compare that with this description of a key concept in 
intuitionism namely Brouwer’s choice sequences:

A choice sequence is an infinite sequence of natural numbers whose terms are generated 
in succession; in the process of generating them, free choices may play a part. At one 
extreme, the selection of each term may be totally determined in advance by some 
effective rule: a sequence generated by such a rule is a lawlike sequence. At the other 
extreme, we have a sequence the selection of each term of which is totally unrestricted: 
these are the lawless sequences. In between are those choice sequences the selection of 
whose terms is partially restricted in advance, but not completely determined.

Elements of Intuitionism, Michael Dummett, p418 (uncomfirmed). Comparing 
the above quotes, Gisin seems to be unaware of Brouwer, although he 
mentions him in later versions of the same paper. Did the suppression of 
alternatives to the formalists’ view of the continuum force a physicist to reinvent
the main alternative out of frustration at the inadequacy of orthodox real 
analysis? Another scholer, from outside academia this time, independently 
arrived at a similar conclusion:

I realized that central to Zeno’s argument was the assumption of the existence of a 
durationless instant in time at which a moving object could be said to have an exactly 
determined or instantaneous position. But for something to be in motion, its position has to 
be constantly changing and undetermined; if it weren’t, the body couldn’t be in motion. By 
wrongly assuming one could freeze and dissect motion at an instant — thus assigning it an 
exact position — the paradoxes were created. In the real world, the object’s motion is 
continuous. We can’t freeze the world at an instant, because nature is forever changing.

The Impossible Goal of Zeno’s Paradox, https://humanparts.medium.com/
the-impossible-goal-of-zenos-paradox-64d8ff6ce4fa, Peter Lynds, 2019. Lynd’s
work seemed to divide opinion – it did garner some positive responses, 
however the depth of animosity that the constructive approach to analysis can 
engender can be gauged by considering this response:
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I have only read the first two sections as it is clear that the author’s arguments are based 
on profound ignorance or misunderstanding of basic analysis and calculus. I’m afraid I am 
unwilling to waste any time reading further, and recommend terminal rejection.

Presumably, the anonymous journal referee responsible for that comment 
would not object to a creationist reformulating the Leibniz higher derivative 
notation.

(38) p24 As author Jennifer Coopersmith puts it:

Isn’t this a retrogade step, to move from the breathtaking abstraction of an infinite, eternal, 
empty space to a set of coordinates that are system-specific and only as extensive as the 
system requires? Well, it might have been a backward step if it wasn’t for one surprising 
and outstanding advantage: the new Lagrangian formulation allows us to sacrifice a 
universal space in favour of a universal physical principle.

The Lazy Universe: An Introduction to the Principle of Least Action, 
Jennifer Coopersmith, 2017, p34.

(39) p24 As applied mathematician Jack Couglin puts it:

We're going to carry these ε through the computation to see how they affect the final result.
To make that easier, we can use special rules of arithmetic to manipulate ε:

• ε2 = 0 ...
• (1 + ε)2 = 1 + 2ε + ε2 = 1 + 2ε
• √(1 + ε) = 1 + ε/2 - ε2/8 + ... = 1 + ε/2

[The last rule] comes from doing a Taylor expansion of √x around the point 1. Another way 
to look at it is that, when x is very close to 1, √x ≈ x, and the slope of the graph of √x at x = 
1 is ½ ... With these rules, we're ready to do the error calculation.

Taming Floating Point Error, https://www.johnbcoughlin.com/posts/floating-
point-axiom/, John B Coughlin, 2020.

NB All graphs were drawn using https://www.desmos.com/calculator.
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